
2001 M id-Atlantic Regional Programming Contest 11/10/2001
Sponsored by IBM Introduction

Sponsored by IBM
Page 1 of 21

2001 Mid-Atlantic Regional Programming Contest

Welcome to the 2001 Programming Contest. Before you start the contest, please be
aware of the following notes:

1. There are eight (8) problems in the packet, using letters A-H. These problems are

NOT necessarily sorted by difficulty. As a team’s solution is judged correct, the team
will be awarded a balloon. The balloon colors are as follows:

Problem Problem Name Balloon Color
A Financial Management Red
B I Think I Need a Houseboat Pink
C Start Up The Startup Yellow
D A New Growth Industry Green
E Algernon’s Noxious Emissions Blue
F FDNY to the Rescue Purple
G For the Porsche Silver
H Oh, Those Achin’ Feet Gold

2. All solutions must read from standard input and write to standard output. In C
this is scanf/printf, in C++ this is cin/cout, and in Java this is System.in/System.out.
From your workstation you may test your program with an input file by redirecting
input from a file:
pr ogr am < f i l e. i n

3. Solutions for problems submitted for judging are called runs. Each run will be
judged. Runs for each particular problem will be judged in the order they are
received. However, it is possible that runs for different problems may be judged out
of order. For example, you may submit a run for B followed by a run for C, but
receive the response for C first. DO NOT request clarifications on when a response
will be returned. If you have not received a response for a run within 90 minutes of
submitting it, you may ask the site judge to determine the cause of the delay.

The judges will respond with one of the following responses. In the event that more
than one response is applicable, the judges may respond with any of the applicable
responses.

Response Description
Correct The run has been judged correct.
Incorrect Output The program generated output that is not correct.
Incorrect Output Format The program’s output is not in the correct format
Incomplete Output The program failed to generate all required output
Syntax Error The program failed to compile on the judges machine
Run-Time Error The program experienced a run time error.
Time-Limit Exceeded The program failed to complete within two minutes.

2001 M id-Atlantic Regional Programming Contest 11/10/2001
Sponsored by IBM Introduction

Sponsored by IBM
Page 2 of 21

4. In the event that you feel a problem statement is ambiguous, you may request a

clarification. Read the problem carefully before requesting a clarification. If the
judges do not believe that you have discovered an ambiguity in the problem, you will
receive the response, “The problem statement is not ambiguous, no clarification is
necessary.” If you receive this response, you should read the problem description
more carefully. If you still feel there is an ambiguity, you will have to be more
specific or descriptive of the ambiguity you have found. If the problem statement is
ambiguous in specifying the correct output for particular input, please include that
input data in the clarification request.

5. The submission of abusive programs or clarification requests to the judges will
be considered grounds for immediate disqualification.

6. Good luck, and HAVE FUN!!!

2001 M id-Atlantic Regional Programming Contest 11/10/2001
Sponsored by IBM Problem A: Financial M anagement

Sponsored by IBM
Page 3 of 21

Problem A: Financial Management
Larry graduated this year and finally has a job. He’s
making a lot of money, but somehow never seems to have
enough. Larry has decided that he needs to grab hold of
his financial portfolio and solve his financing problems.
The first step is to figure out what’s been going on with
his money. Larry has his bank account statements and
wants to see how much money he has. Help Larry by
writing a program to take his closing balance from each of
the past twelve months and calculate his average account
balance.

Input Format:
The input will be twelve lines. Each line will contain the closing balance of his bank
account for a particular month. Each number will be positive and displayed to the penny.
No dollar sign will be included.

Output Format:
The output will be a single number, the average (mean) of the closing balances for the
twelve months. It will be rounded to the nearest penny, preceded immediately by a dollar
sign, and followed by the end-of-line. There will be no other spaces or characters in the
output.

Sample Input:

100. 00
489. 12
12454. 12
1234. 10
823. 05
109. 20
5. 27
1542. 25
839. 18
83. 99
1295. 01
1. 75

Sample Output:
$1581. 42

2001 M id-Atlantic Regional Programming Contest 11/10/2001
Sponsored by IBM Problem B: I Think I Need a Houseboat

Sponsored by IBM
Page 4 of 21

Problem B: I Think I Need a Houseboat
Fred Mapper is considering purchasing some land
in Louisiana to build his house on. In the process
of investigating the land, he learned that the state
of Louisiana is actually shrinking by 50 square
miles each year, due to erosion caused by the
Mississippi River. Since Fred is hoping to live in
this house the rest of his life, he needs to know if
his land is going to be lost to erosion.

After doing more research, Fred has learned that

the land that is being lost forms a semicircle. This semicircle is part of a circle centered
at (0,0), with the line that bisects the circle being the X axis. Locations below the X axis
are in the water. The semicircle has an area of 0 at the beginning of year 1. (Semicircle
illustrated in the Figure.)

Input Format:
The first line of input will be a positive integer indicating
how many data sets will be included (N).
Each of the next N lines will contain the X and Y Cartesian
coordinates of the land Fred is considering. These will be
floating point numbers measured in miles. The Y coordinate
will be non-negative. (0,0) will not be given.

Output Format:
For each data set, a single line of output should appear. This line should take the form of:

“Property N: This property will begin eroding in year Z.”
Where N is the data set (counting from 1), and Z is the first year (start from 1) this
property will be within the semicircle AT THE END OF YEAR Z. Z must be an integer.
After the last data set, this should print out “END OF OUTPUT.”

Notes:
1. No property will appear exactly on the semicircle boundary: it will either be inside or

outside.
2. This problem will be judged automatically. Your answer must match exactly,

including the capitalization, punctuation, and white-space. This includes the periods
at the ends of the lines.

3. All locations are given in miles.

y

x

2001 M id-Atlantic Regional Programming Contest 11/10/2001
Sponsored by IBM Problem B: I Think I Need a Houseboat

Sponsored by IBM
Page 5 of 21

Sample Input:
2
1. 0 1. 0
25. 0 0. 0

Sample Output:
Pr oper t y 1: Thi s pr oper t y wi l l begi n er odi ng i n year 1.
Pr oper t y 2: Thi s pr oper t y wi l l begi n er odi ng i n year 20.
END OF OUTPUT.

2001 M id-Atlantic Regional Programming Contest 11/10/2001
Sponsored by IBM Problem C: Start Up the Startup

Sponsored by IBM
Page 6 of 21

Problem C: Start Up the Startup
Clearly the economy is bound to pick up again soon. As a
forward-thinking Internet entrepreneur, you think that the 'Net
will need a new search engine to serve all the people buying
new computers. Because you're frustrated with the poor
results most search engines produce, your search engine will
be better.

You've come up with what you believe is an innovative
approach to document matching. By giving weight to the
number of times a term appears in both the search string and

in the document being checked, you believe you can produce a more accurate search
result.

Your program will be given a search string, followed by a set of documents. You will
calculate the score for each document and print it to output in the order the document
appears in the input file. To calculate the score for a document you must first calculate
the term score for each term appearing in the search string. A term score is the number of
times a term occurs in the search string multiplied by the number of times it occurs in the
document. The document score is the sum of the square roots of each term score.

Input Format:
The input file consists of a set of documents separated by single lines containing only ten
dashes, “----------” . No line will be longer than 250 characters. No document will be
longer than 100 lines. The first document is the search string. The input file terminates
with two lines of ten dashes in a row.

The input documents will use the full ASCII character set. You must parse each
document into a set of terms.

Terms are separated by whitespace in the input document. Comparisons between terms
are case-insensitive. Punctuation is removed from terms prior to comparisons, e.g.
“don't” becomes “dont” . The resulting terms should contain only the characters { [a-z],[0-
9]} . A term in the input consisting only of punctuation should be ignored. You may
assume the search string and each document will have at least one valid term.

Output Format:
The output is a series of scores, one per line, printed to two decimal places. The scores
are printed in the order the documents occur in the input. No other characters may appear
in the output.

2001 M id-Atlantic Regional Programming Contest 11/10/2001
Sponsored by IBM Problem C: Start Up the Startup

Sponsored by IBM
Page 7 of 21

Sample Input:
f ee f i f o f um
- - - - - - - - - -
f ee, f i , f o! f um! !
- - - - - - - - - -
f ee f ee f i , me me me
- - - - - - - - - -
- - - - - - - - - -

Sample Output:
4. 00
2. 41

2001 M id-Atlantic Regional Programming Contest 11/10/2001
Sponsored by IBM Problem D: A New Growth Industry

Sponsored by IBM
Page 8 of 21

Problem D: A New Growth Industry
A biologist experimenting with DNA modification of bacteria has
found a way to make bacterial colonies sensitive to the
surrounding population density. By changing the DNA, he is able
to “program” the bacteria to respond to the varying densities in
their immediate neighborhood.

The culture dish is a square, divided into 400 smaller squares
(20x20). Population in each small square is measured on a four

point scale (from 0 to 3). The DNA information is represented as an array D, indexed
from 0 to 15, of integer values and is interpreted as follows:

 In any given culture dish square, let K be the sum of that square's density and the
densities of the four squares immediately to the left, right, above and below that square
(squares outside the dish are considered to have density 0). Then, by the next day, that
dish square's density will change by D[K] (which may be a positive, negative, or zero
value). The total density cannot, however, exceed 3 nor drop below 0.

Now, clearly, some DNA programs cause all the bacteria to die off (e.g., [-3, -3, …, -3]).
Others result in immediate population explosions (e.g., [3,3,3, …, 3]), and others are just
plain boring (e.g., [0, 0, … 0]). The biologist is interested in how some of the less
obvious DNA programs might behave.

Write a program to simulate the culture growth, reading in the number of days to be
simulated, the DNA rules, and the initial population densities of the dish.

2001 M id-Atlantic Regional Programming Contest 11/10/2001
Sponsored by IBM Problem D: A New Growth Industry

Sponsored by IBM
Page 9 of 21

Input Format:

Input to this program consists of three parts:
1. The first line will contain a single integer denoting the number of days to be

simulated.
2. The second line will contain the DNA rule D as 16 integer values, ordered from D[0]

to D[15], separated from one another by one or more blanks. Each integer will be in
the range -3…3, inclusive.

3. The remaining twenty lines of input will describe the initial population density in the
culture dish. Each line describes one row of squares in the culture dish, and will
contain 20 integers in the range 0…3, separated from one another by 1 or more
blanks.

Output Format:
The program will produce exactly 20 lines of output, describing the population densities
in the culture dish at the end of the simulation. Each line represents a row of squares in
the culture dish, and will consist of 20 characters, plus the usual end-of-line terminator.

Each character will represent the population density at a single dish square, as follows:

Density Character
0 .
1 !
2 X
3 #

No other characters may appear in the output.

2001 M id-Atlantic Regional Programming Contest 11/10/2001
Sponsored by IBM Problem D: A New Growth Industry

Sponsored by IBM
Page 10 of 21

Sample Input:
 2
 0 1 1 1 2 1 0 - 1 - 1 - 1 - 2 - 2 - 3 - 3 - 3 - 3
 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Sample Output:
##!
#!
!
.
.
.
.
. !
. ! #!
. ! #X#!
. ! #!
. !
.
.
.
.
.
.
.
.

2001 M id-Atlantic Regional Programming Contest 11/10/2001
Sponsored by IBM Problem E: Algernon’s Noxious Emissions

Sponsored by IBM
Page 11 of 21

Problem E: Algernon’s Noxious Emissions
One of the greatest alchemists of the lower Middle
Renaissance, Algernon da Vinci (one of Leonardo's lesser-
known cousins), had the foresight to construct his chemical
works directly over a fast-running stream. Through a series
of clever pipes and sluices, he routed portions of the stream
past each of the tables where his alchemists prepared their
secret brews, allowing them to dispose of their chemical
byproducts into the waters flowing by the table.

As Algernon's business grew, he even added additional
floors to his factory, with water lifted to the higher floors by

treadmill-powered pumps (much to the dismay of the apprentices who found themselves
assigned to pump duty). The pipework for the entire disposal system became quite
complex. It was even rumored by some that the pipes actually circled back in some
places, so that a particularly odorous compound flushed away from one table might return
to that very same spot a few minutes later.

All was not well, however. Algernon's factory suffered from a series of mishaps, minor
explosions, gas clouds, etc. It became obvious that chemicals dumped at one table might
react violently with other chemicals dumped from another table downstream. Algernon
realized that he needed to trace the possible chemical flows through his factory.

Write a program to aid Algernon in this task. To preserve the secrecy of the chemical
processes that are Algernon's stock in trade, all chemicals will be identified by a single
upper-case letter. All tables are identified by positive numbers in the range 1…N, where
N is the number of tables.

2001 M id-Atlantic Regional Programming Contest 11/10/2001
Sponsored by IBM Problem E: Algernon’s Noxious Emissions

Sponsored by IBM
Page 12 of 21

Input Format:
Line 1:
 # of work tables, integer (henceforth referred to as N). N < 50

Lines 2…N+1
 For each table:

• a list of chemicals dumped into the stream at that table, followed by
• a list of chemicals that, if they appeared at that table, would be harmlessly

neutralized by the reactions at that table, allowing no further trace of that
chemical to flow downstream (we will assume that the rate of work at each table
can be adjusted as necessary to guarantee total neutralization of whatever amount
of these chemicals arrive from upstream).

 Each of these lists is given as a series of upper-case alphabetic characters. The only
exception is that a special list, consisting of a single '.' character, will be used to denote an
empty list. The two lists are separated from one other by one or more blanks. The same
chemical will never appear in both lists.

Lines N+2…?
 These lines provide a description of the pipeworks. Each line contains a pair of integers
in the range 1…N, separated by one or more blanks:
 I J
meaning that the table number I is upstream of table number J—anything dumped into
the stream at table I or that arrives in the stream at table I and is not neutralized can then
be counted on to arrive at table J.

No (I,J) pair will be listed more than once, but the pairs may occur in any order. I and J
will never be the same number.

The end of input is signaled by a pair of zeros:
 0 0

Note that if a table only receives water directly from the stream entering the building, that
table will never occur in the second position of a pair. Similarly, any table that discharges
only into the stream leaving the building will never occur in the first position of a pair.

2001 M id-Atlantic Regional Programming Contest 11/10/2001
Sponsored by IBM Problem E: Algernon’s Noxious Emissions

Sponsored by IBM
Page 13 of 21

Output Format:
There will be N lines of output, one for each table, in the same order as they appeared in
the program input. Each line will contain the list of chemicals that can be expected at
that table's output. This list will be printed as a (possibly empty) list of upper-case
alphabetic characters between two colons (:). No empty spaces should be printed on the
line. The characters in the list should be sorted in alphabetic order.

Sample Input:
For the figure at the right, an input file would be:

 4
 AB C
 C BDA
 BCD .
 . A
 1 2
 2 4
 3 1
 1 3
 3 4
 0 0

Sample Output:
: ABD:
: C:
: ABCD:
: BCD:

1

2

3 4

-C

+A +B

-A -B -D

+C

-A

+B +C +D

2001 M id-Atlantic Regional Programming Contest 11/10/2001
Sponsored by IBM Problem F: FDNY to the Rescue!

Sponsored by IBM
Page 14 of 21

Problem F: FDNY to the Rescue!
The Fire Department of New York (FDNY) has always
been proud of their response time to fires in New York
City, but they want to make their response time even
better. To help them with their response time, they want
to make sure that the dispatchers know the closest
firehouse to any address in the city. You have been
hired to write this software and are entrusted with

maintaining the proud tradition of FDNY. Conceptually, the software will be given the
address of the fire, the locations of the firehouses, street intersections, and the time it
takes to cover the distance between each intersection. It will then use this information to
calculate how long it takes to reach an address from each firehouse.

Given a specific fire location in the city, the software will calculate the time taken from
all the fire stations located in the city to reach the fire location. The list of fire stations
will be sorted from shortest time to longest time. The dispatcher can then pick the closest
firestation with available firefighters and equipment to dispatch to the fire.

2001 M id-Atlantic Regional Programming Contest 11/10/2001
Sponsored by IBM Problem F: FDNY to the Rescue!

Sponsored by IBM
Page 15 of 21

Input Format:
Line 1:

of intersections in the city, a single integer (henceforth referred to as N) N<20
Lines 2 to N+1:

A table (square matrix of integer values separated by one or more spaces)
representing the time taken in minutes between every pair of intersections in the
city. In the sample input shown below the value “3” on the 1st row and the 2nd
column represents the time taken from intersection #1 to reach intersection #2.
Similarly the value “9” on the 4th row and the 2nd column represents the time
taken from intersection #4 to reach intersection #2.
A value of -1 for time means that it is not possible to go directly from the origin
intersection (row #) to the destination intersection (column #). All other values in
the table are non-negative.

Line N+2:
An integer value n (<= N) indicating the intersection closest to the fire location
followed by one or more integer values for the intersections closest to the fire
stations (all on one line, separated by one or more spaces) will follow the input
matrix.

Notes on input format:
1. The rows and columns are numbered from 1 to N.
2. All input values are integers
3. All fire locations are guaranteed reachable from all firehouses.
4. All distance calculations are made from the intersection closest to each firehouse to

the intersection closest to the fire.

Output Format:
Line 1:

A label line with the headings for each column, exactly as shown in the example.
Line 2 onwards (one line for each fire station):

A sorted list (based on time) showing the fire station (origin), the destination site,
time taken and a complete shortest path of nodes from the originating fire station
to the fire location.

Notes on output format:
1. Columns are tab separated.
2. If two or more firehouses are tied in time they can be printed in any order.
3. If more than one path exists that has the same minimal time for a given location &

firehouse, either one can be printed on the output.
4. If the fire location and the fire station locations happen to be the same intersection,

the output will indicate that the origin and destination have the same intersection
number, the time will be “0” and the nodes in the shortest path will show just one
number, the fire location.

2001 M id-Atlantic Regional Programming Contest 11/10/2001
Sponsored by IBM Problem F: FDNY to the Rescue!

Sponsored by IBM
Page 16 of 21

Sample Input:

6
0 3 4 - 1 - 1 - 1

- 1 0 4 5 - 1 - 1
2 3 0 - 1 - 1 2
8 9 5 0 1 - 1
7 2 1 - 1 0 - 1
5 - 1 4 5 4 0
2 4 5 6

In the above input the last line indicates that “2” is the location of the fire and “4” , “5”
and “6” are the intersections where fire stations are located.

Sample Output:
Or g Dest Ti me Pat h
5 2 2 5 2
4 2 3 4 5 2
6 2 6 6 5 2

1

2
3

3

2

4

43

A partial map of the city representing the time
taken between intersections

2001 M id-Atlantic Regional Programming Contest 11/10/2001
Sponsored by IBM Problem G: For the Porsche

Sponsored by IBM
Page 17 of 21

Problem G: For the Porsche
The Cash Cow Consulting Company is
challenging the Vice Presidents to increase the
profitability of their departments. In an effort
to provide proper incentive, the Vice President
whose department has the highest Profitability
Index (PI) will win a brand new Porsche. The

contest rules are as follows:
• The winning department will have the maximum Profitability Index

(sales / development cost)
• Each department must stay within the minimum and maximum cost range.
• In the case of equal profitability indexes, the higher profit margin will win

(sales – development cost).
• If two departments are still tied, the winning department will develop the smaller

number of features.
• If two departments are still tied, the winning department will satisfy the most

customers.
Mike Miser is still driving his high school moped and has determined this is his chance to
upgrade. He has instructed the engineering department to determine what it will cost for
each feature to be developed. He then instructed the sales force to determine what
features each customer requires, and what sales that will generate. (To make a sale to a
customer all features required must be provided).

Mike will then determine which feature combination his division should complete to
maximize his chances of winning the contest.

Notes:
1. Because of the type of product the Cash Cow Consulting Company creates, the

production costs are negligible, and do not need to be considered. Only the
development costs should be considered.

2. The tie breakers listed will result in the selection of exactly one feature set.
3. At least one feature set will satisfy the requirements.
4. The Profitability Index should be rounded to three decimal places. The values

3.4566 and 3.4574 will be considered equal.

2001 M id-Atlantic Regional Programming Contest 11/10/2001
Sponsored by IBM Problem G: For the Porsche

Sponsored by IBM
Page 18 of 21

Input Format:
All input will be positive integers.

The first line of input will indicate the number of data sets.

The first line of each data set will contain 4 integers separated by white-space. In order
they are the minimum cost, maximum cost, number of potential features (N) and number
of potential customers (M). N and M will be no larger than 20.

The next N lines (one for each feature) indicate the cost of each feature.

The next M lines will contain the following (one line for each customer):

Number of required features Feature number (for each required feature) Total Sales
for that customer.
For instance, if a given customer wanted 3 features, number 1,2 and 5 and would
provide sales of 50, the line would read: “3 1 2 5 50”

The next data set, if more remain, will begin on the next line.

Output Format:
The first line of output for each data set should indicate which Feature Set is being
considered. These should print “Feature Set N” where N is the feature set number,
counting from 1.

The next line of output for each data set should indicate the profitability index to 3
decimal places.

The next line of output for each data set should indicate the sales dollars

The next line of output for each data set should indicate the cost

The next line of output for each data set should indicate which features are implemented.
The first feature is feature number 1. They must be listed in order, white-space separated.

The final line of output for each data set should indicate the customers who were
satisfied. The first customer is customer #1. They must be listed in order, white-space
separated.

No extra output should appear.

2001 M id-Atlantic Regional Programming Contest 11/10/2001
Sponsored by IBM Problem G: For the Porsche

Sponsored by IBM
Page 19 of 21

Sample Input:
1
100 2000 7 6
250
350
400
250
250
250
500
4 1 4 5 6 4000
4 1 4 5 6 500
4 1 4 5 6 60
3 1 4 5 7
4 1 2 3 5 5
4 1 2 3 7 6

Sample Output:
Feat ur e Set 1
4. 567
4567
1000
1 4 5 6
1 2 3 4

2001 M id-Atlantic Regional Programming Contest 11/10/2001
Sponsored by IBM Problem H: Oh, Those Achin’ Feet

Sponsored by IBM
Page 20 of 21

Problem H: Oh, Those Achin’ Feet
In recent days, a number of people have been injured after
being pushed off the sidewalks due to overcrowding.
City Hall is interested in figuring out how much
pedestrian traffic its sidewalks receive every day. The
results of this study will be used to determine whether the
city needs to fund more sidewalks. The city has surveyed
various buildings in several blocks to determine the
traffic patterns they generate. Your job is to take this
survey data and convert it into sidewalk utilization
information.

Your program will read in the size of the map and a map of several city blocks.
Buildings, streets, and building entrance/exits will be marked on the map. You will also
be given a list of pedestrian load between several pairs of exits and entrances. Your
program will determine the paths used by pedestrians between each source and
destination, add up the total pedestrian load from all paths using each street, and output a
table of the total pedestrian load on each square.

Notes:

• The map is divided into squares. Each square of the map can be a street square, a
building square, or an entrance/exit square. An entrance/exit square serves as
both entrance and exit for that building. There will be no more than 90 street
squares in the map.

• People will always follow the shortest path between their origin and destination.
No shortest path will exceed 75 squares.

• If there are multiple equal-length shortest paths, the load will be divided equally
amongst the paths. For shortest paths, there will be fewer than 50000 equal-
length path combinations.

• If a building entrance/exit has multiple sides facing a street (for example, a corner
of a building), the pedestrians may enter or exit through any street-facing side.

• All movement will be strictly N, E, S, or W. No diagonal movement is permitted.
• Pedestrians cannot move through buildings or off the edge of the map.
• For convenience, you may ignore the fact that each street section may have two

sidewalks.
• Traffic load is not applied to the actual exit/entrance squares themselves.
• If an origin and destination are adjacent on the map, pedestrians may move

directly between them. In this case, there is no resulting load placed on any
portion of the map because no streets are used.

2001 M id-Atlantic Regional Programming Contest 11/10/2001
Sponsored by IBM Problem H: Oh, Those Achin’ Feet

Sponsored by IBM
Page 21 of 21

Input format:
Line 1: X Y

X is the number of columns in the map, Y is the number of rows. Each is a positive
integer less than 20.

Line 2-(Y+1):
Each line contains exactly X symbols indicating the contents of that square on the
map. The symbols are:

X: building, non-entrance/exit
. : (period) street
{ A- O} : letter indicating exit/entrance. Each letter may occur at most once.

Lines (Y+2)-?:
Each line indicates a pedestrian route and specifies a source, destination, and
pedestrian load. Source and destination will each be a letter { A- O} with no spaces in
between. The load factor will be a nonnegative integer, separated from the destination
by whitespace. Source and destination will never be equal. At most 25 routes will be
given. There will be a valid path in the map for each requested route.

The file will terminate with the line:
XX 0

Output format:
The output consists of Y lines, each with X space-separated fields indicating the load
factor. Each load factor is printed to two decimal places with 3 spaces for integer digits
(C 6.2 format).

Sample Input:
4 4
. . . .
A. X.
XXX.
B. . .
AB 2
BA 1
XX 0

Sample Output:
 1. 50 3. 00 3. 00 3. 00
 0. 00 1. 50 0. 00 3. 00
 0. 00 0. 00 0. 00 3. 00
 0. 00 3. 00 3. 00 3. 00

