ACM International Collegiate
Programming Contest 1998/99

Sponsored by IBM
Supported by Wilken GmbH, Schwarz Pharma and the German ACM Chapter

Southwestern European Regional Contest

University of Ulm, Germany

November 1st, 1998

This problem set should contain nine (9) problems on twenty (20) humbered
pages. Please inform a runner immediately if something is missing from
your problem set.

ACM International Collegiate Programming Contest 1998/99
Southwestern European Regional Contest

Problem A
Optimal Programs

Source: optimal. (c|cc| pas|java)
Input: optimal.in

As you know, writing programs is often far from being easy.infis become even harder if your
programs have to be as fast as possible. And sometimes thexason for them to be. Many large
programs such as operating systems or databases havesfiboktt” — segments of code that get
executed over and over again, and make up for a large porfitimectotal running time. Here it
usually pays to rewrite that code portion in assembly lagguaince even small gains in running time
will matter a lot if the code is executed billions of times.

In this problem we will consider the task of automating theegation of optimal assembly code.
Given a function (as a series of input/output pairs), youtareome up with the shortest assembly
program that computes this function.

The programs you produce will have to run on a stack based im@ctihat supports only five
commandsADD, SUB, MJL, DI V andDUP. The first four commands pop the two top elements from
the stack and push their sum, difference, product or intggetient, respectively, on the stack. The
DUP command pushes an additional copy of the top-most stackeeleam the stack.

So if the commands are applied to a stack with the two top el&aeandb (shown to the left),
the resulting stacks look as follows:

Initial
Stack ADD SUB MUL DIV DUP
a
a a
a+b b-a a*b b/a b
c c c c c c

At the beginning of the execution of a program, the stack gdghtain a single integer only: the
input. At the end of the computation, the stack must alsoaipranly one integer; this number is the
result of the computation.

There are three cases in which the stack machine entersaarstte:

¢ A DI V-command is executed, and the top-most element of the "dkk i
e A ADD, SUB, MJL or DI V-command is executed when the stack contains only one etemen

e An operation produces a value greater than 30000 in absadlie.

1This corresponds tb applied to two integers in C/C++, afil V in Pascal.

Input

The input consists of a series of function descriptions.hEhescription starts with a line containing a
single integen (n < 10), the number of input/output pairs to follow. The followitwo lines contains
n integers eachxy, Xy, ..., X, in the first line (all different), ang1,y»,...,y, in the second line. The
numbers will be no more than 30000 in absolute value.

The input is terminated by a test case starting with 0. This test case should not be processed.

Output

You are to find the shortest program that computes a fundtiosuch thatf(x) =y; for all i €
{1,...,n}. This implies that the program you output may not enter aorestate if executed on the
inputsx; (although it may enter an error state for other inputs). @mmsonly programs that have at
most 10 statements.

For each function description, output first the number ofdbscription. Then print out the se-
quence of commands that make up the shortest program to ¢ertimgiven function. If there is
more than one such program, print the lexicographicallyliesta If there is no program of at most
10 statements that computes the function, print the strimgp®®ssi bl e”. If the shortest program
consists of zero commands, prifErifpt y Sequence”.

Output a blank line after each test case.

Sample Input

23
11 1998
1
1998
1998
0

4
1
0-2-6-12
3
1
1

Sample Output

Program 1
DUP DUP MJL SUB

Program 2
| npossi bl e

Program 3
Enpty sequence

ACM International Collegiate Programming Contest 1998/99
Southwestern European Regional Contest

Problem B
The die is cast

Source: di ce. (c| cc| pas|java)
Input: dice.in

InterGames is a high-tech startup company that speciatizisveloping technology that allows users
to play games over the Internet. A market analysis has dlénem to the fact that games of chance
are pretty popular among their potential customers. Be ihdpoly, ludo or backgammon, most of
these games involve throwing dice at some stage of the game.

Of course, it would be unreasonable if players were allowetirow their dice and then enter the
result into the computer, since cheating would be way to.e€agyinstead, InterGames has decided to
supply their users with a camera that takes a picture of fiesviihdice, analyzes the picture and then
transmits the outcome of the throw automatically.

For this they desperately need a program that, given an ic@geining several dice, determines
the numbers of dots on the dice.

We make the following assumptions about the input image® ifffages contain only three dif-
ferent pixel values: for the background, the dice and the datthe dice. We consider two pixels
connectedf they share an edge — meeting at a corner is not enough. liigilme, pixels A and B are
connected, but B and C are not.

A setSof pixels is connected if for every pdia, b) of pixels inS, there is a sequenas, ay, ...,
a in Ssuch thata = a; andb = &, anda; anda; . ; are connected for £ i < k.

We consider all maximally connected sets consisting saghon-background pixels to be dice.
"Maximally connected' means that you cannot add any otheibagckground pixels to the set without
making it dis-connected. Likewise we consider every makitoanected set of dot pixels to form a
dot.

Input

The input consists of pictures of several dice throws. Edctupe description starts with a line
containing two numbersy and h, the width and height of the picture, respectively. Thedees
satisfy 5< w,h < 50.

The following h lines containw characters each. The characters can bé: for a background
pixel, “*” for a pixel of a die, and X" for a pixel of a die's dot.

Dice may have different sizes and not be entirely squareaapttcal distortion. The picture will
contain at least one die, and the numbers of dots per diewsebat1 and 6, inclusive.

The input is terminated by a picture starting with= h = 0, which should not be processed.

3

Output

For each throw of dice, first output its number.
picture, sorted in increasing order.
Print a blank line after each test case.

Sample Input

30 15
*
* k k k% * k k%
*X*** **X***
* k k k% ***X**
***X* * kK%
* kk k% *
* % % *kkkk k%
X** *X**X*
*kkkkk k% *kkkkk*
****X** *X**X*
* % % *kkk k%
00

Sample Output

Throw 1
1224

. Then outpetribmber of dots on the dice in the

ACM International Collegiate Programming Contest 1998/99
Southwestern European Regional Contest

Problem C
It's not a Bug, it's a Feature!

Source: bugs. (c| cc| pas|j ava)
Input: bugs.in

It is a curious fact that consumers buying a new softwareymbgenerally damot expect the software
to be bug-free. Can you imagine buying a car whose steerirggldnly turns to the right? Or a
CD-player that plays only CDs with country music on them?b@kdy not. But for software systems
it seems to be acceptable if they do not perform as they shimulth fact, many software companies
have adopted the habit of sending out patches to fix bugs déeerweeks after a new product is
released (and even charging money for the patches).

Tinyware Inc. is one of those companies. After releasingva werd processing software this
summer, they have been producing patches ever since. Oslwéekend they have realized a big
problem with the patches they released. While all patchesdi®e bugs, they often rely on other
bugs to be present to be installed. This happens becauseottefixug, the patches exploit the special
behavior of the program due to another bug.

More formally, the situation looks like this. Tinyware hasihd a total oh bugsB = {bs,by,... by}
in their software. And they have releasegatches, p2, ..., pm- TO apply patclp; to the software,
the bugsB;” C B have to be present in the software, and the Bjgs. B must be absent (of course
B NB, = 0 holds). The patch then fixes the bugs C B (if they have been present) and introduces
the new bugs;, ™ C B (where, againk~ NF* = 0).

Tinyware's problem is a simple one. Given the original \@rsf their software, which contains
all the bugs inB, it is possible to apply a sequence of patches to the softwhigh results in a bug-
free version of the software? And if so, assuming that evatgtptakes a certain time to apply, how
long does the fastest sequence take?

Input

The input contains several product descriptions. Eachrigeisn starts with a line containing two
integersn andm, the number of bugs and patches, respectively. These vsdtisfy 1< n < 20 and

1 <m<100. This is followed bym lines describing then patches in order. Each line contains an
integer, the time in seconds it takes to apply the patch,@ndtrings ofn characters each.

The first of these strings describes the bugs that have todsemtror absent before the patch can
be applied. Thé-th position of that string is a+” if bug b; has to be present, a * if bug b; has to be
absent, and a0” if it doesn't matter whether the bug is present or not.

The second string describes which bugs are fixed and inteadg the patch. Theth position
of that string is a +” if bug by is introduced by the patch, a * if bug b;j is removed by the patch (if
it was present), and &~ if bug b; is not affected by the patch (if it was present before, it &jlif it
wasn't, is still isn't).

The input is terminated by a description starting wite= m= 0. This test case should not be
processed.

Output

For each product description first output the number of tlhelygpet. Then output whether there is a
sequence of patches that removes all bugs from a produchaisaalin bugs. Note that in such a
sequence a patch may be used multiple times. If there is sgeljence, output the time taken by
the fastest sequence in the format shown in the sample ouffiliere is no such sequence, output
“Bugs cannot be fixed.".

Print a blank line after each test case.

Sample Input

3

000 00-
00- 0O-+
0-- -++
1

0-0+ ----
0

O~NPNRFPPFPW®W

Sample Output

Product 1
Fast est sequence takes 8 seconds.

Product 2
Bugs cannot be fi xed.

ACM International Collegiate Programming Contest 1998/99
Southwestern European Regional Contest

Problem D
Reflections

Source: reflect. (c|cc| pas|java)
Input: reflect.in

Rendering realistic images of imaginary environments ¢geab is an interesting topic in computer
graphics. One of the most popular methods for this purpossyisracing
To render images using ray-tracing, one computes (trabespdth that rays of light entering a
scene will take. We ask you to write a program that computel paths in a restricted environment.
For simplicity, we will consider only two-dimensional s&m All objects in the scene are totally
reflective (mirror) spheres. When a ray of light hits suchlaese, it is reflected such that the angle of
the incoming ray and the leaving ray against the tangenthareame:

fffffffff OV

T

\

The following figure shows a typical path that a ray of lightyntake in such a scene:

Your task is to write a program, that given a scene descriptind a ray entering the scene,
determines which spheres are hit by the ray.

Input

The input consists of a series of scene descriptions. Eastrigion starts with a line containing the
numbern (n < 25) of spheres in the scene. The followingnes contain three integexs, y;. r; each,
where(x,y;) is the center, angd > 0 is the radius of theth sphere. Following this is a line containing

7

four integersx,y, dy, dy, which describe the ray. The ray originates from the piny) and initially
points in the directior{dy, dy). At least one ofl, anddy will be non-zero.

The spheres will be disjoint and non-touching. The ray will start within a sphere, and never
touch a sphere tangentially.

A test case starting with = 0 terminates the input. This case should not be processed.

Output

For each scene first output the number of the scene. Thertipginumbers of the spheres that the ray
hits in its first ten deflections (the numbering of spheregi®eding to their order in the input).

If the ray hits at most ten spheres (and then heads towardgyfiprinti nf after the last sphere
it hits. If the ray hits more than 10 spheres, print three goin. .) after the tenth sphere.

Output a blank line after each test case.

Sample Input

[SN V)
PR RN

oo
BN R

ONUITON WOOWNWW
o

Sample Output

Scene 1
1213inf

Scene 2
2121212121...

ACM International Collegiate Programming Contest 1998/99
Southwestern European Regional Contest

Problem E
Going in circles on Alpha Centauri

Source: centauri. (c|cc|pas|java)
Input: centauri.in

In the early 27th century, Alpha Centauri has become the sfapping hub of this part of the galaxy.

At a space station near the fourth planet, goods from alnvesy espace-faring civilization are traded
and shipped to all major star systems. The space statiomjgedHike a large circle, and has docking
ports on its outer rim, labelled clockwise from 1no

When a trading spaceship docks to a port, it usually makegueest to transfer its cargo to another
ship docked to some other port. This task is taken care oHmgportation robots (transrobs) operating
within the ring of the space station. The transrobs can tr@eekwise around the station, and load
and unload cargo at the ports.

Every ships cargo fits into one transport container, andatisrobs can carry only one container
at a time. The transrobs only differ in maximal weight theg carry.

The consortium operating the space station has recentigatedo upgrade its transportation
system. But before doing so, they want to gather some &tatish the performance of their current
system. More specifically, they are interested in

¢ the average time it takes for a request to be fulfilled, i.e.time between a ship requesting a
cargo to be taken to another port, and the cargo actuallyglugtivered to its destination, and

e the utilization of the transrobs, i.e. the average pergentd transrobs serving requests during
some interval of time

For this, they need a simulation program, which you have itewfo facilitate this task, the consor-
tium has released the following details on their transratitrod program.

e The transrobs are numbered Into

¢ |t takes a transrob 1 minute to get from a port to the next oné jittakes 5 minutes to load or
unload a container at a port.

e Transrobs move on different tracks, and therefore do natenieach other when performing
their duties.

e Transrobs are eithadle, or they areservicing a requestwhich means that they move to the
origin of that request, load the cargo, move to the destinatinload the cargo, and become
idle again.

¢ All incoming requests are put in thlequest list A request from that list ipossibleto satisfy if
there is an idle transrob for which the cargo is not too heavy.

e Aslong as (or as soon as) there are possible requests osttitedly are assigned to transrobs,
giving precedence for older requests over newer requeats Eequest is assigned to the tran-
srob which is closest (in anti-clockwise direction) to thiggim of the request, and for which the
cargo is not too heavy. If there are two transrobs at the sastende, the one with the lower
number gets assigned the request. Assigned requests ereddiebm the request list.

e The assignment procedure is instantenous, i.e. a robds$ staving in the instant it gets as-
signed a request, and a robot becomes idle (and can get a qaestein the instant it finishes
unloading.

Input

The input consists of the description of several simulaigou have to perform. Each description
starts with a line containing two integemsandm, the number of ports and transrobs, respectively,
satisfying 2< n < 100 and I< m< 20. The neximlines contain a single integgreach, the maximum
load that transrobcan carry, measured in galactic tons.

This is followed by one or more shipments to perform. Eaclprsleint is described by a line
containing four integerd, o, d, w: the timet the request was made at (measured in minutes since
the beginning of the simulation), the port numlbexhere the shipment comes from (origin), the port
numberd of the shipment's destination, and the weigttf the container in galactic tons. The request
times are in strictly increasing order in the input file. Tladues satisfy Xt, 1<o0,d<n,o0#dand
I<w<maXli|1<i<m}.

The description of shipments is terminated by the lingé “-1 -1 -1".

The input is terminated by a test case starting wita m= 0. This test case should not be
processed.

Output

For each simulation description in the input, first outpet tlumber of the description. Then, simulate
the operation of the transrobs on the shipment requests atpdtahe average wait time, and the
utilization percentage. The utilization percentage is poted for the interval of the time between the
first request was made until the moment all requests wesisdlti

At the beginning of the simulation (time 0), all transrobs &lle, and located at port number 1.

All values must be exact to three digits to the right of theimhet point.

Output a blank line after each test case.

Input Sample

10 3
5
10

10

GaNEFE DN
W ~NDN
N 0O ©

8
5
17
201 2 4
-1-1-1-1
00

Output Sample

Simulation 1
Average wait tine
Average utilization

17. 250 m nutes
71.875 %

11

ACM International Collegiate Programming Contest 1998/99
Southwestern European Regional Contest

Problem F

Blowing Fuses

Source: fuses. (c|cc| pas|java)
Input: fuses.in

Maybe you are familiar with the following situation. You heplugged in a lot of electrical devices,
such as toasters, refrigerators, microwave ovens, comgp)ereos, etc, and have them all running.
But at the moment when you turn on the TV, the fuse blows, stheepower drawn from all the
machines is greater than the capacity of the fuse. Of cohisésta great safety feature, avoiding that
houses burn down too often due to fires ignited by overheatings. But it is also annoying to walk
down to the basement (or some other inconvenient placeptaae to fuse or switch it back on.

What one would like to have is a program that chebk$oreturning on an electrical device
whether the combined power drawn by all running deviceseds¢he fuses capacity (and it blows),
or whether it is safe to turn it on.

Input

The input consists of several test cases. Each test cag#bdssz set of electrical devices and gives a
sequence of turn on/off operations for these devices.

The first line of each test case contains three integarsandc, wheren is the number of devices
(n < 20), mthe number of operations performed on these devices @the capacity of the fuse (in
Amperes). The followingn lines contain one positive integereach, the consumption (in Amperes)
of thei-th device.

This is followed bym lines also containing one integer each, between lraimtlusive. They
describe a sequence of turn on/turn off operations perfdromethe devices. For every number, the
state of that particular devices is toggled, i.e. if it isremtly running, it is turned off, and if it is
currently turned off, it will by switched on. At the begingirall devices are turned off.

The input will be terminated by a test case starting with m= ¢ = 0. This test case should not
be processed.

Output

For each test case, first output the number of the test casm dutput whether the fuse was blown
during the operation sequence. The fuse will be blown if tma sf the power consumptiore of
turned on devices at some point exceeds the capacity of skee.fu

If the fuse is not blown, output the maximal power consumphy turned on devices that occurred
during the sequence.

Output a blank line after each test case.

12

Sample Input

N
=
o

o]

10

O WRFR WMNPEFEPENNOODNMNWNENODN

o
o

Sample Output

Sequence 1
Fuse was bl own.

Sequence 2

Fuse was not bl own.
Maxi mal power consunption was 9 anperes.

13

ACM International Collegiate Programming Contest 1998/99
Southwestern European Regional Contest

Problem G
Fast Food

Source: fastfood. (c|cc|pas|java)
Input: fastfood.in

The fastfood chain McBurger owns several restaurants adrighway. Recently, they have decided
to build several depots along the highway, each one locatdestaurent and supplying several of the
restaurants with the needed ingredients. Naturally, tdepets should be placed so that the average
distance between a restaurant and its assigned depot isiizedl. You are to write a program that
computes the optimal positions and assignments of the slepot

To make this more precise, the management of McBurger hasdgte following specification:
You will be given the positions ofi restaurants along the highway méntegersd; < b < ... < d,
(these are the distances measured from the company's letigqwhich happens to be at the same
highway). Furthermore, a numblke(k < n) will be given, the number of depots to be built.

The k depots will be built at the locations &f different restaurants. Each restaurant will be
assigned to the closest depot, from which it will then reedis supplies. To minimize shipping costs,
thetotal distance sundefined as

n
Z | di — (position of depot serving restaurat
i=

must be as small as possible.

Write a program that computes the positions of kigepots, such that the total distance sum is
minimized.

Input

The input file contains several descriptions of fastfoodireha Each description starts with a line

containing the two integersandk. nandk will satisfy 1< n<200,1 < k< 30,k < n. Following this

will nlines containing one integer each, giving the positigref the restaurants, ordered increasingly.
The input file will end with a case starting with= k = 0. This case should not be processed.

Output

For each chain, first output the number of the chain. Thenub@ap optimal placement of the depots
as follows: for each depot output a line containing its posiand the range of restaurants it serves.
If there is more than one optimal solution, output any of thétfter the depot descriptions output a
line containing the total distance sum, as defined in thelpnolbext.

Output a blank line after each test case.

14

Sample Input

3

[620e]

Sample Output

Chain 1

Depot 1 at restaurant 2 serves restaurants 1 to 3
Depot 2 at restaurant 4 serves restaurants 4 to 5
Depot 3 at restaurant 6 serves restaurant 6

Total di stance sum= 8

15

ACM International Collegiate Programming Contest 1998/99
Southwestern European Regional Contest

Problem H
Sorting Slides

Source: slides. (c|cc| pas|java)
Input: slides.in

Professor Clumsey is going to give an important talk thisrafton. Unfortunately, he is not a very
tidy person and has put all his transparencies on one big IBedpre giving the talk, he has to sort the
slides. Being a kind of minimalist, he wants to do this with thinimum amount of work possible.

The situation is like this. The slides all have numbers emitbn them according to their order in
the talk. Since the slides lie on each other and are transparmee cannot see on which slide each
number is written.

Cc

Well, one cannoseeon which slide a number is written, but one nmadgducewhich numbers are
written on which slides. If we label the slides which chagastA, B, C, ... as in the figure above, it is
obvious that D has humber 3, B has number 1, C number 2 and Aenunb

Your task, should you choose to accept it, is to write a pnogitzat automates this process.

Input

The input consists of several heap descriptions. Each hesgrigtions starts with a line containing
a single integen, the number of slides in the heap. The followindgjnes contain four integer&min,
Xmax Ymin @NdYmax €ach, the bounding coordinates of the slides. The slidébaviabeled as A,B,C,...
in the order of the input.

This is followed byn lines containing two integers each, theandy-coordinates of the numbers
printed on the slides. The first coordinate pair will be fonter 1, the next pair for 2, etc. No number
will lie on a slide boundary.

The input is terminated by a heap description starting withO, which should not be processed.

Output

For each heap description in the input first output its num@édren print a series of all the slides
whose numbers can be uniquely determined from the inputerQhne pairs by their letter identifier.
If no matchings can be determined from the input, just phietwordnone on a line by itself.
Output a blank line after each test case.

16

Sample Input

4
6 22 10 20
4 18 6 16
8 20 2 18
10 24 4 8
9 15
19 17
11 7
21 11
02
02

OFRPFPOONDN
PP DNDN

Sample Output

Heap 1
(A/4) (B, 1) (C2) (D3

Heap 2
none

ACM International Collegiate Programming Contest 1998/99
Southwestern European Regional Contest

Problem |
Single-Player Games

Source: ganes. (c| cc| pas|j ava)
Input: ganes.in

Playing games is the most fun if other people take part. Bugroplayers are not always available
if you need them, which led to the invention of single-plagames. One of the most well-known
examples is the infamous “Solitaire” packaged with Windoprebably responsible for more wasted
hours in offices around the world than any other game.

The goal of a single-player game is usually to make “movesdil one reaches a final state of
the game, which results in a win or loss, or a score assignéuatdinal state. Most players try to
optimize the result of the game by employing good stratedieghis problem we are interested in
what happens if one plays randomly. After all, these gamesastly used to waste time, and playing
randomly achieves this goal as well as any other strategy.

Games can very compactly represented as (possibly infinite3. Every node of the tree repre-
sents a possible game state. The root of the tree correspmtits starting position of the game. For
an inner node, its children are the game states to which anmoge in a single move. The leaf nodes
are the final states, and every one of them is assigned a nuwtiieh is the score one receives when
ending up at that leaf.

a=((17) 6((83) 4) a=(1b)
b =(4 a)
Trees are defined using the following grammar.
Definition ::= Identifier “=" RealTree
RealTree::= “(” Tree" “)”
Tree ::= Identifier | Integer| “(” Tree" “)”
Identifier := a|b| ... |z

Integer e {...,—3,—-2,-1,0,1,2.3,...,}

18

By using aDefinition the RealTreeon the right-hand side of the equation is assigned to the
Identifieron the left. ARealTreeconsists of a root node and one or more children, given asleeaeq
enclosed in brackets. AndTaeeis either

¢ the tree represented by a giviglentifier, or
¢ aleaf node, represented by a sintyiteger, or

e aninner node, represented by a sequence of one orfmee(its children), enclosed in brack-
ets.

Your goal is to compute the expected score, if one plays rahga.e. at each inner node selects
one of the children uniformly at random. This expected scoveell-defined even for the infinite trees
definable in our framework as long as the probability thatgiume ends (playing randomly) is 1.

Input

The input file contains several gametree descriptions. Hashription starts with a line containing
the numbemn of identifiers used in the description. The identifiers uséthbe the firstn lowercase
letters of the alphabet. The followinglines contain the definitions of these identifiers (in theeord
a, b, ...). Each definition may contain arbitrary whitespace (butairse there will be no spaces
within a single integer). The right hand side of a definitioil ontain only identifiers from the first
n lowercase letters.

The inputs ends with a test case starting with 0. This test case should not be processed.

Output

For each gametree description in the input, first output thmber of the game. Then, for all
identifiers in the ordea, b, ..., output the following. If an identifier represents a gamefa which
the probability of finishing the game is 1, print the expectedre (when playing randomly). This
value should be exact to three digits to the right of the datjpoint.

If the game described by the variable does not end with pilityab, print “Expect ed score
of id undefi ned”instead.

Output a blank line after each test case.

Sample Input

1

a=((17) 6((83) 4))
2

a=1(1Dh)

b = (4 a)

1

a=(aaa)

0

Sample Output

Game 1
Expected score for a = 4.917

19

Ganme 2
Expected score for a = 2.000
Expected score for b 3. 000

Ganme 3
Expect ed score for a undefined

20

