
ACM International Collegiate
Programming Contest 1998/99

Sponsored by IBM
Supported by Wilken GmbH, Schwarz Pharma and the German ACM Chapter

Southwestern European Regional Contest

University of Ulm, Germany

November 1st, 1998

This problem set should contain nine (9) problems on twenty (20) numbered
pages. Please inform a runner immediately if something is missing from

your problem set.

ACM International Collegiate Programming Contest 1998/99
Southwestern European Regional Contest

Problem A
Optimal Programs

Source: optimal.(c|cc|pas|java)
Input: optimal.in

As you know, writing programs is often far from being easy. Things become even harder if your
programs have to be as fast as possible. And sometimes there is reason for them to be. Many large
programs such as operating systems or databases have “bottlenecks” – segments of code that get
executed over and over again, and make up for a large portion of the total running time. Here it
usually pays to rewrite that code portion in assembly language, since even small gains in running time
will matter a lot if the code is executed billions of times.

In this problem we will consider the task of automating the generation of optimal assembly code.
Given a function (as a series of input/output pairs), you areto come up with the shortest assembly
program that computes this function.

The programs you produce will have to run on a stack based machine, that supports only five
commands:ADD, SUB, MUL, DIV andDUP. The first four commands pop the two top elements from
the stack and push their sum, difference, product or integerquotient1, respectively, on the stack. The
DUP command pushes an additional copy of the top-most stack element on the stack.

So if the commands are applied to a stack with the two top elementsa andb (shown to the left),
the resulting stacks look as follows:

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

a

b

...

c

...

c

...

...

c

...

...

c

...

...

c

...

...

a

b

c

...

...

a+b b-a a*b b/a

a

Stack
Initial MULSUBADD DIV DUP

At the beginning of the execution of a program, the stack willcontain a single integer only: the
input. At the end of the computation, the stack must also contain only one integer; this number is the
result of the computation.

There are three cases in which the stack machine enters an error state:� A DIV-command is executed, and the top-most element of the stack is 0.� A ADD, SUB, MUL or DIV-command is executed when the stack contains only one element.� An operation produces a value greater than 30000 in absolutevalue.

1This corresponds to/ applied to two integers in C/C++, andDIV in Pascal.

1

Input

The input consists of a series of function descriptions. Each description starts with a line containing a
single integern (n� 10), the number of input/output pairs to follow. The following two lines contains
n integers each:x1;x2; : : : ;xn in the first line (all different), andy1;y2; : : : ;yn in the second line. The
numbers will be no more than 30000 in absolute value.

The input is terminated by a test case starting withn= 0. This test case should not be processed.

Output

You are to find the shortest program that computes a functionf , such thatf (xi) = yi for all i 2f1; : : : ;ng. This implies that the program you output may not enter an error state if executed on the
inputsxi (although it may enter an error state for other inputs). Consider only programs that have at
most 10 statements.

For each function description, output first the number of thedescription. Then print out the se-
quence of commands that make up the shortest program to compute the given function. If there is
more than one such program, print the lexicographically smallest. If there is no program of at most
10 statements that computes the function, print the string “Impossible”. If the shortest program
consists of zero commands, print “Empty Sequence”.

Output a blank line after each test case.

Sample Input

4
1 2 3 4
0 -2 -6 -12
3
1 2 3
1 11 1998
1
1998
1998
0

Sample Output

Program 1
DUP DUP MUL SUB

Program 2
Impossible

Program 3
Empty sequence

2

ACM International Collegiate Programming Contest 1998/99
Southwestern European Regional Contest

Problem B
The die is cast

Source: dice.(c|cc|pas|java)
Input: dice.in

InterGames is a high-tech startup company that specializesin developing technology that allows users
to play games over the Internet. A market analysis has alerted them to the fact that games of chance
are pretty popular among their potential customers. Be it Monopoly, ludo or backgammon, most of
these games involve throwing dice at some stage of the game.

Of course, it would be unreasonable if players were allowed to throw their dice and then enter the
result into the computer, since cheating would be way to easy. So, instead, InterGames has decided to
supply their users with a camera that takes a picture of the thrown dice, analyzes the picture and then
transmits the outcome of the throw automatically.

For this they desperately need a program that, given an imagecontaining several dice, determines
the numbers of dots on the dice.

We make the following assumptions about the input images. The images contain only three dif-
ferent pixel values: for the background, the dice and the dots on the dice. We consider two pixels
connectedif they share an edge – meeting at a corner is not enough. In thefigure, pixels A and B are
connected, but B and C are not.

A

B

C

A setSof pixels is connected if for every pair(a;b) of pixels inS, there is a sequencea1, a2, : : : ,
ak in Ssuch thata= a1 andb= ak, andai andai+1 are connected for 1� i < k.

We consider all maximally connected sets consisting solelyof non-background pixels to be dice.
`Maximally connected' means that you cannot add any other non-background pixels to the set without
making it dis-connected. Likewise we consider every maximal connected set of dot pixels to form a
dot.

Input

The input consists of pictures of several dice throws. Each picture description starts with a line
containing two numbersw and h, the width and height of the picture, respectively. These values
satisfy 5� w;h� 50.

The following h lines containw characters each. The characters can be: “.” for a background
pixel, “*” for a pixel of a die, and “X” for a pixel of a die's dot.

Dice may have different sizes and not be entirely square due to optical distortion. The picture will
contain at least one die, and the numbers of dots per die is between 1 and 6, inclusive.

The input is terminated by a picture starting withw= h= 0, which should not be processed.

3

Output

For each throw of dice, first output its number. Then output the number of dots on the dice in the
picture, sorted in increasing order.

Print a blank line after each test case.

Sample Input

30 15
..............................
..............................
...............*..............
...*****......****............
...*X***.....**X***...........
...*****....***X**............
...***X*.....****.............
...*****.......*..............
..............................
........***........******.....
.......**X****.....*X**X*.....
......*******......******.....
.....****X**.......*X**X*.....
........***........******.....
..............................
0 0

Sample Output

Throw 1
1 2 2 4

4

ACM International Collegiate Programming Contest 1998/99
Southwestern European Regional Contest

Problem C
It's not a Bug, it's a Feature!

Source: bugs.(c|cc|pas|java)
Input: bugs.in

It is a curious fact that consumers buying a new software product generally donotexpect the software
to be bug-free. Can you imagine buying a car whose steering wheel only turns to the right? Or a
CD-player that plays only CDs with country music on them? Probably not. But for software systems
it seems to be acceptable if they do not perform as they shoulddo. In fact, many software companies
have adopted the habit of sending out patches to fix bugs everyfew weeks after a new product is
released (and even charging money for the patches).

Tinyware Inc. is one of those companies. After releasing a new word processing software this
summer, they have been producing patches ever since. Only this weekend they have realized a big
problem with the patches they released. While all patches fixsome bugs, they often rely on other
bugs to be present to be installed. This happens because to fixone bug, the patches exploit the special
behavior of the program due to another bug.

More formally, the situation looks like this. Tinyware has found a total ofnbugsB= fb1;b2; : : : ;bng
in their software. And they have releasedmpatchesp1, p2, : : : , pm. To apply patchpi to the software,
the bugsB+i � B have to be present in the software, and the bugsB�i � B must be absent (of course
B+i \B�i = /0 holds). The patch then fixes the bugsF�i � B (if they have been present) and introduces
the new bugsF+i � B (where, again,F�i \F+i = /0).

Tinyware's problem is a simple one. Given the original version of their software, which contains
all the bugs inB, it is possible to apply a sequence of patches to the softwarewhich results in a bug-
free version of the software? And if so, assuming that every patch takes a certain time to apply, how
long does the fastest sequence take?

Input

The input contains several product descriptions. Each description starts with a line containing two
integersn andm, the number of bugs and patches, respectively. These valuessatisfy 1� n� 20 and
1� m� 100. This is followed bym lines describing them patches in order. Each line contains an
integer, the time in seconds it takes to apply the patch, and two strings ofn characters each.

The first of these strings describes the bugs that have to be present or absent before the patch can
be applied. Thei-th position of that string is a “+” if bug bi has to be present, a “-” if bug bi has to be
absent, and a “0” if it doesn' t matter whether the bug is present or not.

The second string describes which bugs are fixed and introduced by the patch. Thei-th position
of that string is a “+” if bug bi is introduced by the patch, a “-” if bug bi is removed by the patch (if
it was present), and a “0” if bug bi is not affected by the patch (if it was present before, it still is, if it
wasn' t, is still isn' t).

The input is terminated by a description starting withn = m= 0. This test case should not be
processed.

5

Output

For each product description first output the number of the product. Then output whether there is a
sequence of patches that removes all bugs from a product thathas alln bugs. Note that in such a
sequence a patch may be used multiple times. If there is such asequence, output the time taken by
the fastest sequence in the format shown in the sample output. If there is no such sequence, output
“Bugs cannot be fixed.”.

Print a blank line after each test case.

Sample Input

3 3
1 000 00-
1 00- 0-+
2 0-- -++
4 1
7 0-0+ ----
0 0

Sample Output

Product 1
Fastest sequence takes 8 seconds.

Product 2
Bugs cannot be fixed.

6

ACM International Collegiate Programming Contest 1998/99
Southwestern European Regional Contest

Problem D
Reflections

Source: reflect.(c|cc|pas|java)
Input: reflect.in

Rendering realistic images of imaginary environments or objects is an interesting topic in computer
graphics. One of the most popular methods for this purpose isray-tracing.

To render images using ray-tracing, one computes (traces) the path that rays of light entering a
scene will take. We ask you to write a program that computes such paths in a restricted environment.

For simplicity, we will consider only two-dimensional scenes. All objects in the scene are totally
reflective (mirror) spheres. When a ray of light hits such a sphere, it is reflected such that the angle of
the incoming ray and the leaving ray against the tangent are the same:

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

w w

The following figure shows a typical path that a ray of light may take in such a scene:

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��
��
��
��

��
��
��
��

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

��
��
��
��

��
��
��
��

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

Your task is to write a program, that given a scene description and a ray entering the scene,
determines which spheres are hit by the ray.

Input

The input consists of a series of scene descriptions. Each description starts with a line containing the
numbern (n� 25) of spheres in the scene. The followingn lines contain three integersxi ;yi ; r i each,
where(xi ;yi) is the center, andr i > 0 is the radius of thei-th sphere. Following this is a line containing

7

four integersx;y;dx;dy, which describe the ray. The ray originates from the point(x;y) and initially
points in the direction(dx;dy). At least one ofdx anddy will be non-zero.

The spheres will be disjoint and non-touching. The ray will not start within a sphere, and never
touch a sphere tangentially.

A test case starting withn= 0 terminates the input. This case should not be processed.

Output

For each scene first output the number of the scene. Then printthe numbers of the spheres that the ray
hits in its first ten deflections (the numbering of spheres is according to their order in the input).

If the ray hits at most ten spheres (and then heads towards infinity), printinf after the last sphere
it hits. If the ray hits more than 10 spheres, print three points (...) after the tenth sphere.

Output a blank line after each test case.

Sample Input

3
3 3 2
7 7 1
8 1 1
3 8 1 -4
2
0 0 1
5 0 2
2 0 1 0
0

Sample Output

Scene 1
1 2 1 3 inf

Scene 2
2 1 2 1 2 1 2 1 2 1 ...

8

ACM International Collegiate Programming Contest 1998/99
Southwestern European Regional Contest

Problem E
Going in circles on Alpha Centauri

Source: centauri.(c|cc|pas|java)
Input: centauri.in

In the early 27th century, Alpha Centauri has become the mainshipping hub of this part of the galaxy.
At a space station near the fourth planet, goods from almost every space-faring civilization are traded
and shipped to all major star systems. The space station is shaped like a large circle, and has docking
ports on its outer rim, labelled clockwise from 1 ton:

5

4n-

3n-

2n-

1n-

n

n-

1
2

3

4

5

6

7

8

When a trading spaceship docks to a port, it usually makes a request to transfer its cargo to another
ship docked to some other port. This task is taken care of by transportation robots (transrobs) operating
within the ring of the space station. The transrobs can travel clockwise around the station, and load
and unload cargo at the ports.

Every ships cargo fits into one transport container, and all transrobs can carry only one container
at a time. The transrobs only differ in maximal weight they can carry.

The consortium operating the space station has recently decided to upgrade its transportation
system. But before doing so, they want to gather some statistics on the performance of their current
system. More specifically, they are interested in� the average time it takes for a request to be fulfilled, i.e. the time between a ship requesting a

cargo to be taken to another port, and the cargo actually being delivered to its destination, and� the utilization of the transrobs, i.e. the average percentage of transrobs serving requests during
some interval of time

For this, they need a simulation program, which you have to write. To facilitate this task, the consor-
tium has released the following details on their transrob control program.� The transrobs are numbered 1 tom.� It takes a transrob 1 minute to get from a port to the next one, and it takes 5 minutes to load or

unload a container at a port.

9

� Transrobs move on different tracks, and therefore do not hinder each other when performing
their duties.� Transrobs are eitheridle, or they areservicing a request, which means that they move to the
origin of that request, load the cargo, move to the destination, unload the cargo, and become
idle again.� All incoming requests are put in therequest list. A request from that list ispossibleto satisfy if
there is an idle transrob for which the cargo is not too heavy.� As long as (or as soon as) there are possible requests on the list, they are assigned to transrobs,
giving precedence for older requests over newer requests. Each request is assigned to the tran-
srob which is closest (in anti-clockwise direction) to the origin of the request, and for which the
cargo is not too heavy. If there are two transrobs at the same distance, the one with the lower
number gets assigned the request. Assigned requests are deleted from the request list.� The assignment procedure is instantenous, i.e. a robot starts moving in the instant it gets as-
signed a request, and a robot becomes idle (and can get a new request) in the instant it finishes
unloading.

Input

The input consists of the description of several simulations you have to perform. Each description
starts with a line containing two integers,n andm, the number of ports and transrobs, respectively,
satisfying 2� n� 100 and 1�m� 20. The nextm lines contain a single integerl i each, the maximum
load that transrobi can carry, measured in galactic tons.

This is followed by one or more shipments to perform. Each shipment is described by a line
containing four integers,t, o, d, w: the timet the request was made at (measured in minutes since
the beginning of the simulation), the port numbero where the shipment comes from (origin), the port
numberd of the shipment's destination, and the weightw of the container in galactic tons. The request
times are in strictly increasing order in the input file. The values satisfy 1� t, 1� o;d � n, o 6= d and
1�w�maxf l i j 1� i �mg.

The description of shipments is terminated by the line “-1 -1 -1 -1”.
The input is terminated by a test case starting withn = m= 0. This test case should not be

processed.

Output

For each simulation description in the input, first output the number of the description. Then, simulate
the operation of the transrobs on the shipment requests and output the average wait time, and the
utilization percentage. The utilization percentage is computed for the interval of the time between the
first request was made until the moment all requests were satisfied.

At the beginning of the simulation (time 0), all transrobs are idle, and located at port number 1.
All values must be exact to three digits to the right of the decimal point.
Output a blank line after each test case.

Input Sample

10 3
5
10

10

20
1 2 9 8
2 7 8 5
5 3 2 17
20 1 2 4
-1 -1 -1 -1
0 0

Output Sample

Simulation 1
Average wait time = 17.250 minutes
Average utilization = 71.875 %

11

ACM International Collegiate Programming Contest 1998/99
Southwestern European Regional Contest

Problem F
Blowing Fuses

Source: fuses.(c|cc|pas|java)
Input: fuses.in

Maybe you are familiar with the following situation. You have plugged in a lot of electrical devices,
such as toasters, refrigerators, microwave ovens, computers, stereos, etc, and have them all running.
But at the moment when you turn on the TV, the fuse blows, sincethe power drawn from all the
machines is greater than the capacity of the fuse. Of course this is a great safety feature, avoiding that
houses burn down too often due to fires ignited by overheatingwires. But it is also annoying to walk
down to the basement (or some other inconvenient place) to replace to fuse or switch it back on.

What one would like to have is a program that checksbefore turning on an electrical device
whether the combined power drawn by all running devices exceeds the fuses capacity (and it blows),
or whether it is safe to turn it on.

Input

The input consists of several test cases. Each test case describes a set of electrical devices and gives a
sequence of turn on/off operations for these devices.

The first line of each test case contains three integersn, mandc, wheren is the number of devices
(n� 20),m the number of operations performed on these devices andc is the capacity of the fuse (in
Amperes). The followingn lines contain one positive integerci each, the consumption (in Amperes)
of the i-th device.

This is followed bym lines also containing one integer each, between 1 andn inclusive. They
describe a sequence of turn on/turn off operations performed on the devices. For every number, the
state of that particular devices is toggled, i.e. if it is currently running, it is turned off, and if it is
currently turned off, it will by switched on. At the beginning all devices are turned off.

The input will be terminated by a test case starting withn= m= c= 0. This test case should not
be processed.

Output

For each test case, first output the number of the test case. Then output whether the fuse was blown
during the operation sequence. The fuse will be blown if the sum of the power consumptionsci of
turned on devices at some point exceeds the capacity of the fusec.

If the fuse is not blown, output the maximal power consumption by turned on devices that occurred
during the sequence.

Output a blank line after each test case.

12

Sample Input

2 2 10
5
7
1
2
3 6 10
2
5
7
2
1
2
3
1
3
0 0 0

Sample Output

Sequence 1
Fuse was blown.

Sequence 2
Fuse was not blown.
Maximal power consumption was 9 amperes.

13

ACM International Collegiate Programming Contest 1998/99
Southwestern European Regional Contest

Problem G
Fast Food

Source: fastfood.(c|cc|pas|java)
Input: fastfood.in

The fastfood chain McBurger owns several restaurants alonga highway. Recently, they have decided
to build several depots along the highway, each one located at a restaurent and supplying several of the
restaurants with the needed ingredients. Naturally, thesedepots should be placed so that the average
distance between a restaurant and its assigned depot is minimized. You are to write a program that
computes the optimal positions and assignments of the depots.

To make this more precise, the management of McBurger has issued the following specification:
You will be given the positions ofn restaurants along the highway asn integersd1 < d2 < ::: < dn

(these are the distances measured from the company's headquarter, which happens to be at the same
highway). Furthermore, a numberk (k� n) will be given, the number of depots to be built.

The k depots will be built at the locations ofk different restaurants. Each restaurant will be
assigned to the closest depot, from which it will then receive its supplies. To minimize shipping costs,
the total distance sum, defined as

n

∑
i=1

j di � (position of depot serving restauranti) j
must be as small as possible.

Write a program that computes the positions of thek depots, such that the total distance sum is
minimized.

Input

The input file contains several descriptions of fastfood chains. Each description starts with a line
containing the two integersn andk. n andk will satisfy 1� n� 200;1� k� 30;k� n. Following this
will n lines containing one integer each, giving the positionsdi of the restaurants, ordered increasingly.

The input file will end with a case starting withn= k= 0. This case should not be processed.

Output

For each chain, first output the number of the chain. Then output an optimal placement of the depots
as follows: for each depot output a line containing its position and the range of restaurants it serves.
If there is more than one optimal solution, output any of them. After the depot descriptions output a
line containing the total distance sum, as defined in the problem text.

Output a blank line after each test case.

14

Sample Input

6 3
5
6
12
19
20
27
0 0

Sample Output

Chain 1
Depot 1 at restaurant 2 serves restaurants 1 to 3
Depot 2 at restaurant 4 serves restaurants 4 to 5
Depot 3 at restaurant 6 serves restaurant 6
Total distance sum = 8

15

ACM International Collegiate Programming Contest 1998/99
Southwestern European Regional Contest

Problem H
Sorting Slides

Source: slides.(c|cc|pas|java)
Input: slides.in

Professor Clumsey is going to give an important talk this afternoon. Unfortunately, he is not a very
tidy person and has put all his transparencies on one big heap. Before giving the talk, he has to sort the
slides. Being a kind of minimalist, he wants to do this with the minimum amount of work possible.

The situation is like this. The slides all have numbers written on them according to their order in
the talk. Since the slides lie on each other and are transparent, one cannot see on which slide each
number is written.

A

B

C

D

1

3

2

4

Well, one cannotseeon which slide a number is written, but one maydeducewhich numbers are
written on which slides. If we label the slides which characters A, B, C, ... as in the figure above, it is
obvious that D has number 3, B has number 1, C number 2 and A number 4.

Your task, should you choose to accept it, is to write a program that automates this process.

Input

The input consists of several heap descriptions. Each heap descriptions starts with a line containing
a single integern, the number of slides in the heap. The followingn lines contain four integersxmin,
xmax, ymin andymax, each, the bounding coordinates of the slides. The slides will be labeled as A,B,C,...
in the order of the input.

This is followed byn lines containing two integers each, thex- andy-coordinates of then numbers
printed on the slides. The first coordinate pair will be for number 1, the next pair for 2, etc. No number
will lie on a slide boundary.

The input is terminated by a heap description starting withn= 0, which should not be processed.

Output

For each heap description in the input first output its number. Then print a series of all the slides
whose numbers can be uniquely determined from the input. Order the pairs by their letter identifier.

If no matchings can be determined from the input, just print the wordnone on a line by itself.
Output a blank line after each test case.

16

Sample Input

4
6 22 10 20
4 18 6 16
8 20 2 18
10 24 4 8
9 15
19 17
11 7
21 11
2
0 2 0 2
0 2 0 2
1 1
1 1
0

Sample Output

Heap 1
(A,4) (B,1) (C,2) (D,3)

Heap 2
none

17

ACM International Collegiate Programming Contest 1998/99
Southwestern European Regional Contest

Problem I
Single-Player Games

Source: games.(c|cc|pas|java)
Input: games.in

Playing games is the most fun if other people take part. But other players are not always available
if you need them, which led to the invention of single-playergames. One of the most well-known
examples is the infamous “Solitaire” packaged with Windows, probably responsible for more wasted
hours in offices around the world than any other game.

The goal of a single-player game is usually to make “moves” until one reaches a final state of
the game, which results in a win or loss, or a score assigned tothat final state. Most players try to
optimize the result of the game by employing good strategies. In this problem we are interested in
what happens if one plays randomly. After all, these games are mostly used to waste time, and playing
randomly achieves this goal as well as any other strategy.

Games can very compactly represented as (possibly infinite)trees. Every node of the tree repre-
sents a possible game state. The root of the tree correspondsto the starting position of the game. For
an inner node, its children are the game states to which one can move in a single move. The leaf nodes
are the final states, and every one of them is assigned a number, which is the score one receives when
ending up at that leaf.

a = (1 b)
b = (4 a)

a = ((1 7) 6 ((8 3) 4))

1

1

1

4

4

1 7

8 3

4

6

Trees are defined using the following grammar.

De f inition ::= Identi f ier “=” RealTree

RealTree::= “(” Tree+ “)”

Tree ::= Identi f ier j Integerj “(” Tree+ “)”

Identi f ier ::= a j b j : : : j z
Integer 2 f: : : ;�3;�2;�1;0;1;2;3; : : : ;g

18

By using aDefinition, the RealTreeon the right-hand side of the equation is assigned to the
Identifieron the left. ARealTreeconsists of a root node and one or more children, given as a sequence
enclosed in brackets. And aTreeis either� the tree represented by a givenIdentifier, or� a leaf node, represented by a singleInteger, or� an inner node, represented by a sequence of one or moreTrees (its children), enclosed in brack-

ets.

Your goal is to compute the expected score, if one plays randomly, i.e. at each inner node selects
one of the children uniformly at random. This expected scoreis well-defined even for the infinite trees
definable in our framework as long as the probability that thegame ends (playing randomly) is 1.

Input

The input file contains several gametree descriptions. Eachdescription starts with a line containing
the numbern of identifiers used in the description. The identifiers used will be the firstn lowercase
letters of the alphabet. The followingn lines contain the definitions of these identifiers (in the order
a, b, : : :). Each definition may contain arbitrary whitespace (but of course there will be no spaces
within a single integer). The right hand side of a definition will contain only identifiers from the first
n lowercase letters.

The inputs ends with a test case starting withn= 0. This test case should not be processed.

Output

For each gametree description in the input, first output the number of the game. Then, for alln
identifiers in the ordera, b, : : : , output the following. If an identifier represents a gametree for which
the probability of finishing the game is 1, print the expectedscore (when playing randomly). This
value should be exact to three digits to the right of the decimal point.

If the game described by the variable does not end with probability 1, print “Expected score
of id undefined” instead.

Output a blank line after each test case.

Sample Input

1
a = ((1 7) 6 ((8 3) 4))
2
a = (1 b)
b = (4 a)
1
a = (a a a)
0

Sample Output

Game 1
Expected score for a = 4.917

19

Game 2
Expected score for a = 2.000
Expected score for b = 3.000

Game 3
Expected score for a undefined

20

