
0[3]1

-1[6]4

-1[5]4

0[1]0

3[10]1

3[10]1

0[5]0

0

1

2

3

4 5

0[30]0

0[2]-1

6
1[8]0

1[20]0

Southeastern European Regional Programming Contest

October 15, 2005

Bucharest, Romania

Problem F
Adventurous Driving

Input File: F.IN
Output File: standard output
Program Source File: F.C, F.CPP, F.JAVA, F.PAS

After a period of intensive development of the transportation infrastructure, the government of
Ruritania decides to take firm steps to strengthen citizens' confidence in the national road network
and sets up a compensation scheme for adventurous driving (CSAD). Those driving on a road with
holes, bumps and other entertaining obstacles get compensation; those driving on a decent road
pay tax. These compensations and taxes are obtained and paid in cash on entry on each road and
depend on the entry point on the road. What you get and pay driving on a road from A to B may be

different from what you get and pay driving on the same road from B to A. The Ruritarian authorities

call fee the amount of money paid as tax or obtained as compensation on entry on a road. A
positive fee is a tax; a negative fee stands for compensation.

John Doe plans to take advantage of CSAD for saving money he needs to repair his old car. When
driving from A to B, John follows a path he calls optimal: a path that is rewarding and has the

minimal length out of the paths with the minimal weight from A to B. In John's opinion, a path is

rewarding if all the roads in the path are rewarding, and a road (X,Y) is rewarding if it has the

minimal entry fee out of the roads leaving X. The weight of a path is the sum of the entry fees paid

along the path. The length of a path cumulates the length of the roads in the path. The problem is
helping John to compute the weight and the length of an optimal path from A to B on a given map.

For example, on the illustrated road map
vertices designate cities and edges stand
for roads. The label fuv[L]fvu of the

road (u,v) shows the fee fuv for driving

from u to v, the fee fvu for driving from

v to u, and the length L of the road. The

path (0,2,4,3,5) from 0 to 5 is optimal:

it is rewarding, has weight 2 (-1+3+0+0)

and length 50 (5+10+5+30). The path (0,1,4,3,5), although rewarding and of weight 2, has length

51. The path (0,3,5) has weight 0 and length 20 but it is not rewarding.

Write a program that reads several data sets from a text file. Each data set encodes a road map
and starts with four integers: the number 1≤≤≤≤n≤≤≤≤100 of towns on the map, the number 0≤≤≤≤m≤≤≤≤5000 of

roads, the departure town 0≤≤≤≤A≤≤≤≤n-1, and the destination town 0≤≤≤≤B≤≤≤≤n-1. Follow m data quintuples

(u,v,fuv[L]fvu), where u and v are town identifiers (integers in the range 0..n-1), 100≤≤≤≤fuv,

fvu≤≤≤≤100 are integer fees for driving on the road (u,v), and 1≤≤≤≤L≤≤≤≤100 is the integer length of the

road. The quintuples may occur in any order. Except the quintuples, which do not contain white
spaces, white spaces may occur freely in input. Input data terminate with an end of file and are
correct. For each data set, the program prints – from the beginning of a line – the weight and the
length of an optimal path, according to John's oppinion, from A to B. If there is no optimal path from

A to B the text VOID is printed. If the weight of the optimal path from A to B has no lower bound the

text UNBOUND is printed.

Input Output
3 3 0 2 (0,1,0[1]0) (0,2,1[1]0) (1,2,1[1]0)

3 3 0 2 (0,1,-1[1]1) (0,2,0[1]0) (1,2,0[1]1)

7 11 0 5 (0,1,-1[6]4) (0,2,-1[5]4) (0,3,0[1]0) (1,4,3[10]1)

 (2,4,3[10]1) (3,4,0[5]0) (3,5,0[30]0) (3,5,1[20]0)

 (4,6,0[3]1) (6,5,1[8]0) (6,6,0[2]-1)

VOID

UNBOUND

2 50

acmacm

An input/output sample is in the table above. The first data set encodes a road map with no optimal
path from 0 to 2. The second data set corresponds to a map whose optimal path from 0 to 2 has an

unbound weight. The third data set encodes the road map shown in the above figure.

