
Arab and North African Region
American University in Cairo

October 31 - November 3, 2002
International Collegiate
Programming Contestacm

The 27th Annual ACM
International Collegiate Programming Contest

Arab and North African
5th Regional Contest

sponsored by IBM, Microsoft

American University in Cairo
November 2, 2002

! The problem set is made of 13 numbered pages

! The maximum allowable running time for a submission is 120 seconds.

Arab and North African Region
American University in Cairo

October 31 - November 3, 2002
International Collegiate
Programming Contestacm

[A] Anagrams
Program: anagrams.(c|cpp|java)
Input: anagrams.in
Output: anagrams.out

Description

Two words are said to be anagrams if one can be formed by permuting the letters of the other.
For example: "pots", "tops", and "stop" are anagrams. An anagram chain is a list of words that
are all anagrams to each other. The shortest anagram chain has the length two. We’re interested
in calculating the length of the longest anagram chain in a given list of words. For example, the
following nine words: rates, pots, tops, along, aster, stop, stare, tears, and long has two
anagram chains where the longest includes the four words: rates, aster, stare, and tears.

Input Format

Your program will be tested on a number of test cases. The first line of the input file contains an
integer D representing the number of test cases in the input file.

Each test case contains one or more words, but no more than 20,000 words, with no duplicates.
Each word appears on a separate line. All words are in small letters, and in no particular order.
No word will be longer than 10 characters. Each test case ends with a string made of one or more
’-’ characters.

Output Format

For each test case, write, on a separate line, the length (number of words) of the longest anagram
chain found in the given list of words.

Sample Input/Output

anagrams.in
2
rates
pots
tops
along
aster
stop
stare
tears
long

north
fresher
refresh
thorn
bye
--

anagrams.out
4
2

Page 1 of 13

Arab and North African Region
American University in Cairo

October 31 - November 3, 2002
International Collegiate
Programming Contestacm

[B] Crossing the Words
Program: crossword.(c|cpp|java)
Input: crossword.in
Output: crossword.out

Description

Yasmeen loves solving crossword puzzles. A crossword puzzle is a
puzzle in which words are filled into a pattern of numbered squares
(the grid) in answer to correspondingly numbered clues and in such a
way that the words read across (left to right,) and down.
Yasmeen normally solves a puzzle by writing the answers on a separate
sheet of paper rather than on the puzzle itself. Once the puzzle is
solved, she then neatly copies the solution on the grid.
But today Yasmeen has a problem, she lost the page of the clues (which
describes where the words go on the puzzle.) All what she has is the
puzzle grid and the list of words that constitutes the answers to the
clues. She needs your help in reconstructing the solution to the puzzle.

he stood no
ones else so

she tell do lost

h e

s t o o d

n o

e l s e

l o s t

Input Format

The first line of the input file is an integer D representing the number of test cases in the input
file.

The first line of each test case specifies three integers: R, C, and W. R is the number of rows in the
grid, C is the number of columns in the grid, and W is the number of words. Note that 0 < R < 50
and 0 < C < 50 and 0 < W < 1000.

Starting at the second line of each test case are R lines describing the grid. The grid is described
using two characters: A ’.’ indicates a square that should be eventually filled with a letter, while
a ’#’ means the corresponding square “is blocked” (it doesn’t receive any letter.)

The list of words appears on the last line of each test case. Words are separated by exactly one
space character. All words are small letters and there are no duplicates.

The sample input describes two test cases: The first is a 4x5 grid with 10 words. The second test
case starts at line #8 and describes a 7x7 grid with 15 words.

Output Format

For each test case, print the grid with the solution filled in. There should be a blank line after
each grid.

Page 2 of 13

Sample Input
crossword.in

2
4 5 10
.....
..#..
....#
#....
he stood no ones else so she tell do lost
7 7 15
..#....
.#....#
.#.###.
.......
.#.#.#.
##.....
.......
egypt arab africa pyramid cairo dr ad nb ri ia ed maid addon ding aladdin

Sample Output
crossword.out

stood
he#no
else#
#lost

ed#ding
g#arab#
y#f###a
pyramid
t#i#a#d
##cairo
aladdin

e d d i n g

g a r a b
y f a

p y r a m i d

t i a d

c a i r o

a l a d d i n

Sample CrossWord #2

B. Crossing the Words Page 3 of 13

Arab and North African Region
American University in Cairo

October 31 - November 3, 2002
International Collegiate
Programming Contestacm

[C] City of Flatland
Program: flatland.(c|cpp|java)
Input: flatland.in
Output: flatland.out

Description

In recognition to the number of famous mathematicians of its residents, the City of Flatland has
decided to rename all its streets as numbers (positive integers to be more precise.) The streets
of Flatland are organized as a grid. The city decided to number all its North-South streets using
powers of two (1, 2, 4, 8, . . .) and all its East-West streets using odd numbers (1, 3, 5, . . .). The
city also decided to re-number all its buildings so that the number of each building is the result
of multiplying the numbers of the two streets the building is on. For example, building #40 is at
the intersection of streets 5 and 8.

1
2

4
8

16
32

64 128 256

1

3

5

7

9

11

13

15

1
2

4
8

16
32

64 128 256

3
5

7
9

11
13

15

6
12

24
48

96 192 384 768

10
20

40
80 160 320 640

14
28

56
112 224 448 896

18
36

72 144 288 576

22
44

88 176 352 704

26
52 104 208 416 832

30
60 120 240

. . .

.

. . .

The problem with this numbering scheme is that it is not easy for the residents to determine the
distance between buildings. The distance between any two buildings is the number of buildings
one needs to cross to go from one building to another. One can only move parallel to the streets
(no diagonals or any other shortcuts.) For example, to go from building #6 to building #40,
one has to travel one building north and two buildings east, so the distance is 3. Similarly, the
distance from building #80 to building #88 is 4.

Help the residents of Flatland by writing a program that calculates the distance between any two
given buildings.

Input Format

The input is made of one or more pairs of building numbers. Each pair <S,T> appears on a single
line with a single space between the two numbers. Note that S,T < 1,000,000,000. The end of
the input is identified by the pair <0,0> (which is not part of the test cases.)

Output Format

For each input pair <S,T>, the output file should include a line of the form:

The distance between S and T is D.

The output file should be in the same order as the input file.

Page 4 of 13

Sample Input/Output

flatland.in
12 14
20 30
40 50
0 0

flatland.out
The distance between 12 and 14 is 3.
The distance between 20 and 30 is 6.
The distance between 40 and 50 is 12.

C. City of Flatland Page 5 of 13

Arab and North African Region
American University in Cairo

October 31 - November 3, 2002
International Collegiate
Programming Contestacm

[D] Pushing Carts
Program: carts.(c|cpp|java)
Input: carts.in
Output: carts.out

Description

Lamees works at the delivery zone in a plant. Carts
arrive to the delivery zone on the [IN] track, and it
is Lamees’s responsibility to make sure the carts are
sorted before leaving the delivery zone. The carts are
heavy, so they must remain on the tracks at all times.
The carts can be temporarily pushed to either of the
two side bays. The exchange at the center can be
configured to move the carts in the following seven
directions:

IN

LEFT

IN

RIGHT RIGHTLEFTRIGHTLEFT

OUT

RIGHT

OUT

LEFT IN

OUT

L
E

F
T

R
IG

H
T

OUT

IN

C

A

B

D

Initially, the exchange is set to [IN→ OUT]. The exchange can be reconfigured from the control
room which is a bit far from the delivery zone. Normally, there is an operator at the control room to
configure the exchange while Lamees remains at the delivery zone. But today the operator has called
in sick, and Lamees has to do both tasks herself. Every time the exchange is to be reconfigured,
Lamees has to make a trip to the control room. Help Lamees by writing a program to compute the
minimum number of times the exchange must be reconfigured to complete the job.

For example, the carts D-C-A-B can be sorted in three exchanges (see figure on next page.) First set
the exchange to [IN→ LEFT], push D and C, then set the exchange to [IN→ OUT], push A,B, finally
set the exchange to [LEFT→ OUT] and push C,D.

Input Format

The input file includes a number of test cases. Each test case is described using a string of capital
letters appearing on a separate line. The end of the test cases is indicated by a string starting with
the letter ’Z’ (which is not part of the test cases.)

Each test case specifies the order in which the carts arrive to the [IN] track. For example, the string
"DCAB" says that D arrives first, then C, then A, and finally B. The proper order of the carts is a
lexicographic ordering (i.e. "ABCD"). There will be no “missing” letters in any test case, and no
duplicates. There will be no more than 26 carts in any test string.

Output Format

For each test case, write on a separate line, the minimum number of exchanges needed to sort the
carts.

Page 6 of 13

Sample Input/Output

carts.in
DCAB
EDACB
ZaEnd

carts.out
3
4

Illustrations

How the first test case was solved in 3 moves:

A

B

C D

A

B

C D

A

B

C

D

How the second test case was solved in 4 moves:

A

D E

C

B

A

D E

C

B

A

D E C B

A

D

E

C

B

D. Pushing Carts Page 7 of 13

Arab and North African Region
American University in Cairo

October 31 - November 3, 2002
International Collegiate
Programming Contestacm

[E] Palindromes
Program: palindromes.(c|cpp|java)
Input: palindromes.in
Output: palindromes.out

Description

A palindrome is a word that reads the same forward or backward. For example, “noon”, “civic”,
and “rotator” are all palindromes. We can extend the definition of palindromes to include integers
too. For example, “5”, “22”, and “10701” are all palindromes. As for negative integers, we’ll say
that a negative integer is a palindrome only if its positive counterpart is a palindrome.

Write a program that computes how many palindrome integers there are between any two given
integers.

Input Format

The input file is made of a number of test cases. Each test case specifies a range of integers using
a pair of integers <L,U> where −1, 000, 000 < L ≤ U < 1, 000, 000. Each test case is specified on
a separate line, with at least one space character between L and U.

The set of test cases ends with the pair <-1,-1>, which is not part of the test cases.

Output Format

For each test case <L,U>, your program should print how many palindromes there are within the
range L and U (inclusive).

Sample Input/Output

palindromes.in
101 202
11 30
-202 -101
-1 -1

palindromes.out
11
2
11

Page 8 of 13

Arab and North African Region
American University in Cairo

October 31 - November 3, 2002
International Collegiate
Programming Contestacm

[F] Why Johnny Can’t Count
Program: johnny.(c|cpp|java)
Input: johnny.in
Output: johnny.out

Description

Poor Johnny; He can hardly count. Johnny needs a program to ”spell out” numbers into their
equivalent English text. For example, the number 109210 is read in English as: “one hundred and
nine thousand, two hundred and ten”. To make the program easier, Johnny is willing to accept
the following compromises:

1. The program will be given positive integers less than a million.

2. No need to print any punctuation marks.

3. Use singular words, not plural. For example: “thousand” rather than “thousands”.

4. Don’t use the word “and” in the phrase. For example, instead of converting the number 102
into “one hundred and two”, all you need to do is convert it to “one hundred two”. Similarly,
109210 would be spelled out as: “one hundred nine thousand two hundred ten”.

On the other hand, Johnny requires the following:

1. Johnny hates spelling mistakes. The output should be spelled correctly and using only small
letters. The list of allowable words in the output is:
zero, one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve,
thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, twenty, thirty,
forty, fifty, sixty, seventy, eighty, ninety, hundred, thousand.

2. Johnny requires that the output be sorted in a non-decreasing order to make it easier for
him to locate the numbers.

3. For an unclear reason, there will be duplicates in the input file, and Johnny insists that each
instance be printed.

Input Format

The input is made of one or more positive integers terminated by a negative number (which is
not part of the input data.) Each number appears on a separate line.

Output Format

For each number, you should print exactly one line showing the number and its equivalent phrase
as shown in the sample output. Use a single space character as a separator. Note the colon
character ’:’ after the number.

Page 9 of 13

Sample Input
johnny.in

199
123456
14
199
421000
112
999999
199
-1

Sample Output
johnny.out

14: fourteen
112: one hundred twelve
199: one hundred ninety nine
199: one hundred ninety nine
199: one hundred ninety nine
123456: one hundred twenty three thousand four hundred fifty six
421000: four hundred twenty one thousand
999999: nine hundred ninety nine thousand nine hundred ninety nine

F. Why Johnny Can’t Count Page 10 of 13

Arab and North African Region
American University in Cairo

October 31 - November 3, 2002
International Collegiate
Programming Contestacm

[G] Snakes & Ladders
Program: snakes.(c|cpp|java)
Input: snakes.in
Output: snakes.out

Description

Snakes and ladders is a board game played on an N ∗N squares grid (see the figure on the next
page.) The squares are numbered from 1 up to N2. Players start by placing their counters at
square #1. Players take turns by throwing a dice and moving their counter the number of spaces
shown on the dice. The board includes a number of snakes and ladders. If a player’s counter
lands on the mouth of a snake, the counter must move down to the tail of the snake. If a player’s
counter lands at the bottom of a ladder then the counter must climb to the top. The winner is
the first player to reach square #N2. The following points are worth knowing about the layout
of the board:

1. There are no ladders or snakes that start or end at the first or last square.

2. Snakes and ladders can’t be adjacent. There is at least one ”regular” square between any
two squares that are the starting or ending points of either snakes or ladders.

Your friend Fadi wants you to write a program to help him win the game of Snake and Ladders.
See, Fadi is a professional cheater. He can throw the dice and let it show any number he desires.
Fadi wants a program to determine the minimum number of throws needed to win the game.

For example, given the ”example one” board shown on the next page, Fadi can win in three moves
as follows: On the first throw he gets a 4, moving him to square 5, up the ladder to square 16.
Then another 4 on the second throw taking him to square 20, up the ladder to square 33. A 3 on
the third throw wins him the game.

Input Format

The first line of the input file is an integer D representing the number of test cases in the input
file.

Each test case is described using three lines. The first line includes three integers: N, S, and L. N
is the size of the board, S is the number of snakes on the board, L is the number of ladders. Note
that 0 < N ≤ 20 and 0 < S < 100 and 0 < T < 100.

The second line of a test case includes S integer pairs. Each pair describes a particular snake. The
first integer is the starting square of the snake (its mouth) and the second integer is the ending
square (the tail.) Remember, squares are numbered starting at 1.

The third line is the same as the second but for ladders. It includes L integer pairs.

Output Format

For each test case, write, on a separate line, the minimum number of dice throws required to win
the game.

Page 11 of 13

Sample Input/Output

snakes.in
2
6 1 3
35 25
3 23 5 16 20 33
5 1 1
16 14
9 11

snakes.out
3
4

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

N = 6 N = 5

Example One Example Two

G. Snakes & Ladders Page 12 of 13

Arab and North African Region
American University in Cairo

October 31 - November 3, 2002
International Collegiate
Programming Contestacm

[H] Prime Spiral
Program: spiral.(c|cpp|java)
Input: spiral.in
Output: spiral.out

Description

Back in 1963, while doodling during a boring talk at a scientific
meeting, a Polish-American mathematician named Stanislaw Ul-
man came up with what is now known as the Prime Spiral. While
drawing a grid of lines, he decided to number the intersections
according to a spiral pattern as you see in the adjacent figure. He
then began circling the numbers in the spiral that were primes.
Surprisingly, the circled primes appeared to fall along a number
of diagonal straight lines.

17 16 15 14 13

18 5 4 3 12

19 6 1 2 11

20 7 8 9 10

21 22 23 24 25

Prime Spiral of Size N=5

In this problem, we’re interested in finding the largest sum of primes along
any diagonal straight line for any given grid of size N < 100 . For example,
inspecting the prime spiral for N = 5, the largest sum of primes on a diagonal
line is 19 + 7 + 23 = 49. Similarly the largest sum of primes for N = 3 is 10.

5 4 3

6 1 2

7 8 9

N=3

Input Format

The first line in the input file contains a single integer D which represents how many data sets
are used to test your program.

Each data set contains exactly one integer, N , representing the size of the grid, on a separate
line. N is always an odd number in the range 0 < N < 100

Output Format

For each test case, write the largest sum on a separate line.

Sample Input/Output

spiral.in
2
5
3

spiral.out
49
10

Page 13 of 13

	cover.pdf
	Page 1

