

# 25<sup>th</sup> Annual ACM International Collegiate Programming Contest 2000 Greater New York Regional



## **Problem G – N-Credible Mazes**

### Background

An *n*-tersection is defined as a location in *n*-dimensional space, *n* being a positive integer, having all non-negative integer coordinates. For example, the location (1,2,3) represents an n-tersection in three dimensional space. Two n-tersections are said to be *adjacent* if they have the same number of dimensions and their coordinates differ by exactly 1 in a single dimension only. For example, (1,2,3) is adjacent to (0,2,3) and (2,2,3) and (1,2,4), but not to (2,3,3) or (3,2,3) or (1,2). An *n*-teresting space is defined as a collection of paths between adjacent n-tersections. Finally, an *n*-credible maze is defined as an n-teresting space combined with two specific n-tersections in that space, one of which is identified as the starting n-tersection and the other as the ending n-tersection.

### Input

The input file will consist of the descriptions of one or more n-credible mazes. The first line of the description will specify n, the dimension of the n-teresting space. (For this problem, n will not exceed 10, and all coordinate values will be less than 10.) The next line will contain 2n non-negative integers, the first n of which describe the starting n-tersection, least dimension first, and the next n of which describe the ending n-tersection. Next will be a non-negative number of lines containing 2n non-negative integers each, identifying paths between adjacent n-tersections in the n-teresting space. The list is terminated by a line containing only the value -1. Several such maze descriptions may be present in the file. The end of the input is signalled by space dimension of zero. No further data will follow this terminating zero.

### Output

For each maze output it's position in the input; e.g. the first maze is "Maze #1", the second is "Maze #2", etc. If it is possible to travel through the n-credible maze's n-teresting space from the starting n-tersection to the ending n-tersection, also output "can be travelled" on the same line. If such travel is not possible, output "cannot be travelled" instead.

### Example

| Input       | Output                      |
|-------------|-----------------------------|
| 2           | Maze #1 can be travelled    |
| 0 0 2 2     | Maze #2 cannot be travelled |
| 0 0 0 1     |                             |
| 0 1 0 2     |                             |
| 0 2 1 2     |                             |
| 1 2 2 2     |                             |
| -1          |                             |
| 3           |                             |
| 1 1 1 1 2 3 |                             |
| 1 1 2 1 1 3 |                             |
| 1 1 3 1 2 3 |                             |
| 1 1 1 1 1 0 |                             |
| 1 1 0 1 0 0 |                             |
| 1 0 0 0 0 0 |                             |
| -1          |                             |
| 0           |                             |
|             |                             |