
acmInternational Collegiate
Programming Contest

event
sponsor2006

ACM International Collegiate Programming Contest

2006

South American Regional Contests

November 10-11, 2006

Contest Session

This problem set contains 9 problems; pages are numbered from 1 to 19.

This problem set is used in simultaneous contests hosted in the following countries:

• Argentina

• Bolivia

• Brazil

• Chile

• Colombia

• Peru

• Venezuela

ACM ICPC2006 – South American Regionals 1

Problem A
Weekend Lottery

Source file name: lottery.c, lottery.cpp, lottery.java or lottery.pas

Some people are against lotteries on moral grounds, some governments forbid lotteries, but
with the advent of Internet this popular form of gambling, which started in China and helped
finance the Great Wall, is thriving.

But the odds of winning a national lottery are tiny, and therefore your college classmates
decided to organize a private lottery, with draws every Friday. The lottery is based on a popular
style: a student who wants to bet chooses C distinct numbers from 1 to K and pays US$ 1.00
(notice that traditional lotteries such as US National Lotto use C = 6 and K = 49). On Friday
during lunch C numbers (also from 1 to K) are drawn. The student whose bet has the largest
number of correct guesses receives the amount collected in the bets. This amount is shared in
case of ties and accumulates to next week if no one guessed any of the numbers drawn.

Some of your colleagues do not believe in the laws of probability and asked you to write a
program that determines the numbers that have been drawn the fewest times considering all
previous draws, so that they can bet on those numbers.

Input

The input contains several test cases. The first line of a test case contains three integers
N , C and K which indicate respectively the number of draws that have already happened
(1 ≤ N ≤ 10000), how many numbers comprises a bet (1 ≤ C ≤ 10) and the maximum value
of the numbers to be chosen in a bet (C < K ≤ 100). Each of the next N lines contains C
distinct integers Xi indicating the numbers drawn in each previous contest (1 ≤ Xi ≤ K, for
1 ≤ i ≤ C). The end of input is indicated by N = C = K = 0.

The input must be read from standard input.

Output

For each test case in the input your program must write one line of output, containing the
set of numbers that have been drawn the fewest times. This set must be printed as a list, in
increasing order of numbers. Leave one blank space between two consecutive numbers in the
list.

The output must be written to standard output.

ACM ICPC2006 – South American Regionals 2

Sample input

5 4 6

6 2 3 4

3 4 6 5

2 3 6 5

4 5 2 6

2 3 6 4

4 3 4

3 2 1

2 1 4

4 3 2

1 4 3

0 0 0

Output for the sample input

1

1 2 3 4

ACM ICPC2006 – South American Regionals 3

Problem B
Lazy Jumping Frog

Source file name: frog.c, frog.cpp, frog.java or frog.pas

Mr. Frog lives in a grid-like marsh of rectangular shape, composed of equally-sized cells,
some of which are dry, some of which are only watery places. Mr. Frog lives in a dry cell and
can jump only from a dry cell to another dry cell on his wanderings around the marsh.

Mr. Frog wants to visit his girlfriend, Ms. Toad, who also lives in a dry cell in the same
marsh. But Mr. Frog is lazy, and wants to spend the minimum amount of energy in his jumping
way to Ms. Toad’s home. Mr. Frog knows how much energy he spends in any of his jumps. For
any single jump, Mr. Frog always uses the following figure to determine which are the possible
target cells from his current position (the cell marked F), and the corresponding energy spent
in the jump, in calories. Any other cell is unreachable from Mr. Frog’s current position with a
single jump.

7 6 5 6 7
6 3 2 3 6
5 2 F 2 5
6 3 2 3 6
7 6 5 6 7

Your task is to determine the minimum amount of energy that Mr. Frog needs to spend to
get from his home to Ms. Toad’s home.

Input

The input contains several test cases. The first line of a test case contains two integers, C and
R, indicating respectively the number of columns and rows of the marsh (1 ≤ C, R ≤ 1000).
The second line of a test case contains four integers Cf , Rf , Ct, and Rt, where (Cf , Rf) specify
Mr. Frog’s home location and (Ct, Rt) specify Ms. Toad’s home location (1 ≤ Cf , Ct ≤ C and
1 ≤ Rf , Rt ≤ R). The third line of a test case contains an integer W (0 ≤ W ≤ 1000) indicating
the number of watery places in the marsh. Each of the next W lines contains four integers C1,
R1, C2, and R2 (1 ≤ C1 ≤ C2 ≤ C and 1 ≤ R1 ≤ R2 ≤ R) describing a rectangular watery
place comprising cells whose coordinates (x, y) are so that C1 ≤ x ≤ C2 and R1 ≤ y ≤ R2. The
end of input is indicated by C = R = 0.

The input must be read from standard input.

Output

For each test case in the input, your program must produce one line of output, containing the
minimum calories consumed by Mr. Frog to go from his home location to Ms. Toad’s home
location. If there is no way Mr. Frog can get to Ms. Toad’s home, your program should output
impossible.

The output must be written to standard output.

ACM ICPC2006 – South American Regionals 4

Sample input

4 4

1 1 4 2

2

2 1 3 3

4 3 4 4

4 4

1 1 4 2

1

2 1 3 4

7 6

4 2 7 6

5

4 1 7 1

5 1 5 5

2 4 3 4

7 5 7 5

6 6 6 6

0 0

Output for the sample input

14

impossible

12

ACM ICPC2006 – South American Regionals 5

Problem C
Jukebox

Source file name: jukebox.c, jukebox.cpp, jukebox.java or jukebox.pas

The ICPC judges are preparing a party for the opening ceremony. For the party, they intend
to add a playlist with some songs to the jukebox software (a simple MP3 player). However,
there are so many songs in the computer that it is difficult to find the ones they want to add.
As a consequence, they need to use the search feature many times.

In this jukebox, when you search for a string s, the software returns every music whose title
or artist name contains s as a substring. String s is a substring of string t if t contains all
characters of s as a contiguous sequence (for example, ‘bc’ is a substring of ‘abcd’, but ‘ac’ is
not). To save their precious time, while looking for a song, they always use one of the song’s
golden string, i.e. one of the shortest strings for which the search returns as a result only the
song they want.

In the example above, a possible golden string for the song ‘johnnatan’ is ‘ta’. Note that
‘ta’ is not a substring of the name of another song nor a substring of the artist of another
song. Note also that there is no string of size equal to 1 that could identify uniquely the song
‘johnnatan’.

They discovered that if they remove the artist fields from some of the songs they can get
even smaller golden strings. For the song ‘john’, there is no golden string. However, if one
removes the artist field from all other songs, the string ‘c’ becomes the golden string for the
song ‘john’.

ACM ICPC2006 – South American Regionals 6

Given the song list (each song with name and artist), your job is to determine the minimum
sum of the golden string sizes for all songs that can be obtained if one is allowed to remove
some of the artist fields. In the figure above you can see a possible best result with the golden
strings in bold. The minimum sum of the golden string sizes in this case is 10.

Input

The input contains several test cases. The first line of each test case contains one integer N
(1 ≤ N ≤ 30), which indicates the number of songs. Following there will be N pairs of lines
(2 ∗ N lines), one pair for each song. The first line of a pair will contain the song name, the
second line will contain the artist name. Both artist and song names are strings containing only
lower case letters or underlines and having at least 1 and at most 30 characters. There will be
at most 6 different artists in the list.

The end of the input is given by N = 0.

The input must be read from standard input.

Output

For each test case your program must output one single line with the minimum sum of the
golden string sizes. You may assume that there will always be a solution.

The output must be written to standard output.

ACM ICPC2006 – South American Regionals 7

Sample input

8

a_flor

los_hermanos

anna_julia

los_hermanos

quem_sabe

los_hermanos

pierrot

los_hermanos

azedume

los_hermanos

johnny

massacration

johnnatan

massacration

john

massacration

4

c

axc

b

axc

d

cc

xc

cc

0

Output for the sample input

10

5

ACM ICPC2006 – South American Regionals 8

Problem D
Bubble Maps

Source file name: maps.c, maps.cpp, maps.java or maps.pas

Bubble Inc. is developing a new technology for browsing a map at different zoom levels. Their
new technology assumes that the region to be mapped is a rectangular plane surface and it
divides this surface in rectangular sub-regions, which represent deeper zoom levels.

Bubble Inc. technology represents maps using a structure known as quad-tree. In a quad-
tree, a rectangular region named x may be divided in half, both horizontally and vertically,
resulting in four equal-sized rectangular sub-regions. Those sub-regions are called child regions
of x, and are named xp for the top-left, xq for the top-right, xr for the bottom-right and xs for
the bottom-left regions, where xc represents the concatenation of string x and character c =
‘p’, ‘q’, ‘r’ or ‘s’. For example, if the base region to be mapped is called m, the child regions of
m are, from top-left in clockwise order: mp, mq, mr and ms, as illustrated below.

mp mq
ms mr

Any region can be further subdivided. For example, the region named ms can be further
divided into sub-regions msp, msq, msr and mss, as illustrated below.

msp msq
mss msr

As another example, the figure below shows the result of subdividing the child sub-regions
of the region named msr.

msrpp msrpq msrqp msrqq
msrps msrpr msrqs msrqr
msrsp msrsq msrrp msrrq
msrss msrsr msrrs msrrr

Sub-regions with names of the same length have the same zoom level, since they represent
regions of the same size. Sub-regions in the same zoom level that share a common side are said
to be neighbors.

Anything that lies outside the base region m is not mapped and, for every zoom level, all
sub-regions of m are mapped.

Bubble’s map technology provides a way for the user to navigate from a given sub-region to
neighboring sub-regions in the directions up, down, left and right. You mission is to help Bubble
Inc. in finding the neighboring sub-regions of a given sub-region. That is, given the name of a
rectangular sub-region, you must determine the names of its four neighboring sub-regions.

Input

The input contains several test cases. The first line contains one integer N indicating the
number of test cases. Each of the following N lines represents a test case, containing the name

ACM ICPC2006 – South American Regionals 9

of a region composed by C characters (2 ≤ C ≤ 5000), the first always being the letter ‘m’ and
the following being either ‘p’, ‘q’, ‘r’ or ‘s’.

The input must be read from standard input.

Output

For each test case in the input your program must produce one line of output, containing the
names of the four neighboring regions of the given region in the order of direction up, down,
left, right. For the neighbors that are not mapped you should output <none> instead of its
name. Leave one blank space between two consecutive names.

The output must be written to standard output.

Sample input

2

mrspr

mps

Output for the sample input

mrspq mrssq mrsps mrsqs

mpp msp <none> mpr

ACM ICPC2006 – South American Regionals 10

Problem E
Onion Layers

Source file name: onion.c, onion.cpp, onion.java or onion.pas

Dr. Kabal, a well recognized biologist, has recently discovered a liquid that is capable of
curing the most advanced diseases. The liquid is extracted from a very rare onion that can
be found in a country called Onionland. But not all onions of Onionland are worth to take to
the lab for processing. Only those onions with an odd number of layers contain the miraculous
liquid. Quite an odd discovery!

Figure 1: Onion from Onionland

Dr. Kabal has hired a lot of research assistants to collect and analyse onions for him. Since
he does not want to share his discovery with the world yet, he didn’t tell the assistants to look
for onions with an odd number of layers. Instead, each assistant was given the task of collecting
onions, and selecting points from each of the layer’s outer borders, so that an approximation of
the layer structure of the onion can be reconstructed later. Dr. Kabal told the assistants that
the next step will be a “complicated analysis” of these points. In fact, all he will do is simply
to use the points to count the number of layers in each of the onions, and select the ones with
an odd number of layers.

Figure 2: Points collected by an assistant

It is clear that the approximation obtained by Dr. Kabal, from the points collected, might
have a different shape than the original onion. For instance, only some of the points of the
onion shown in Figure 1 would be extracted in the process, giving rise to a set of points as
shown in Figure 2. With these points Dr. Kabal will try to approximate the original layers of
the onion, obtaining something like what is shown in Figure 3. The approximation procedure
followed by Dr. Kabal (whose result is shown in Figure 3) is simply to recursively find nested
convex polygons such that at the end every point belongs to precisely one of the polygons.
The assistants have been told to select points in such a way that the number of layers in the

ACM ICPC2006 – South American Regionals 11

approximation, if done in this recursive manner, will be the same as in the original onion, so
that is fine with Dr. Kabal. The assistants are also aware that they need at least three points
to approximate a layer, even the innermost one.

Figure 3: Dr. Kabal’s approximation

Your task is to write a program that, given a set of points collected by an assistant (as
shown in Figure 2), determines if the respective onion should be taken to the laboratory.

Input

The input contains several test cases. Each test case consists of an integer 3 ≤ N ≤ 2000 in
a single line, indicating the number of points collected by the assistants. Following, there are
N lines, each containing two integers −2000 ≤ X, Y ≤ 2000 corresponding to the coordinates
of each point. The input is finished by a problem with N = 0 points, which should not be
processed.

The input must be read from standard input.

Output

There should be one line of output for each test case in the input. For each test case print the
string

Take this onion to the lab!

if the onion should be taken to the laboratory or

Do not take this onion to the lab!

if the onion should not be taken to the laboratory.

The output must be written to standard output.

ACM ICPC2006 – South American Regionals 12

Sample input

7

0 0

0 8

1 6

3 1

6 6

8 0

8 8

11

2 6

3 2

6 6

0 0

0 11

1 1

1 9

7 1

7 9

8 10

8 0

0

Output for the sample input

Do not take this onion to the lab!

Take this onion to the lab!

ACM ICPC2006 – South American Regionals 13

Problem F
Odd or Even

Source file name: odd.c, odd.cpp, odd.java or odd.pas

There are several versions of Odd or Even, a game played by competitors to decide random
issues (such as “who will code this problem?”). In one of the versions, for two players, the game
starts with each player calling either odds or evens. Then they count to three (some people
chant “Once, twice, three, SHOOT!”). On three, both players hold out one of their hands,
showing a number of fingers (from zero to five). If the fingers add to an even number, then the
person who called evens wins. If the fingers add to an odd number, then the person who called
odds wins.

John and Mary played several games of Odd or Even. In every game John chose odds (and,
consequently, Mary chose evens). During the games each player wrote down, in small cards,
how many fingers he/she showed, using one card for each game – Mary used blue cards, John
used red cards. Their objective was to be able to re-check the results later, looking at the cards
for each game. However, at the end of the day John dropped the deck of cards, and although
they could separate the cards by color, they are now out of order.

Given the set of numbers written on red cards and on blue cards, you must write a program
to determine the minimum number of games that Mary certainly won.

Input

The input contains several test cases. The first line of a test case contains an integer N
representing the number of games played (1 ≤ N ≤ 100). The second line of a test case
contains N integers Xi, indicating the number of fingers shown by Mary in each of the games
(0 ≤ Xi ≤ 5, for 1 ≤ i ≤ N). The third line of a test case contains N integers Yi, indicating
the number of fingers shown by John in each of the games (0 ≤ Yi ≤ 5, for 1 ≤ i ≤ N). The
end of input is indicated by N = 0.

The input must be read from standard input.

Output

For each test case your program must write one line, containing one integer, indicating the
minimum number of games that Mary certainly won.

The output must be written to standard output.

Sample input

3

1 0 4

3 1 2

9

0 2 2 4 2 1 2 0 4

1 2 3 4 5 0 1 2 3

0

Output for the sample input

0

3

ACM ICPC2006 – South American Regionals 14

Problem G
Power Generation

Source file name: power.c, power.cpp, power.java or power.pas

Demand for electricity grew rapidly in the country over recent years, and is projected to grow
even faster in the next twenty years. To cope with this increase in demand, the government is
planning to privatize the country’s electricity power-generation sector, ending the monopoly of
the state-owned company, ICPC (Independent Circuit Power Corporation).

ICPC owns a set of power-generation plants (hydroelectric and nuclear). ICPC’s plants
are connected by power lines that cross the country. Each power line connects two distinct
power plants and is constructed in a straight line. A power path is a sequence of power lines
l1, l2, . . . , lm, with each power line li connecting directly plants pi−1 and pi, such that any two
consecutive power lines li and li+1 are linked to a common power plant pi.

Power plants were built over several years, one at a time, due to budget restrictions. Also
due to budget restrictions, every time a new power plant was built, only one new power line
was constructed to integrate the new plant to the existing ICPC system. The new power line
always linked the newly built power plant to the nearest power plant already in the system. If
more than one such plant existed (that is, if more than one plant was located at a minimum
distance from the new plant), the oldest plant was chosen.

In the privatization project, the aim is to break up the ICPC power-generation system
into smaller companies, each company owning a set of power plants (each power plant will be
owned by only one company). After the privatization, ICPC will cease to exist; only the new
companies will own the power plants. The division of power plants among new companies must
obey the following restrictions:

• the total capacity of every new company must be at least C, where C is a value in MW
(Mega Watts) decided by the government. The total capacity of a set of power plants is
the sum of capacities of those plants;

• power paths between any two plants owned by a new company must include only plants
owned by that company.

You have been hired by ICPC to determine which is the largest number of new companies
that can be created in the privatization process.

Input

The input contains several test cases. The first line of a test case contains two integers N and
C indicating respectively the total number of power plants owned by ICPC (1 ≤ N ≤ 10000)
and the minimum total capacity, in MW, that every new company must have (1 ≤ C ≤ 10000).
Power plants are identified by integers from 1 to N ; plant 1 was the first to be built, plant 2 the
second to be built, and so on. Each of the next N lines describes a power plant; the first line
describes power plant 1, the second line describes power plant 2, and so on. Each description
consists of three integers X, Y and P , where (X, Y) is the plant location (0 ≤ X ≤ 1000 and
0 ≤ Y ≤ 1000) and P is the plant capacity (1 ≤ P ≤ 1000). Plants were built at different
locations (that is, no two plants have the same location). The end of input is indicated by
N = C = 0.

The input must be read from standard input.

ACM ICPC2006 – South American Regionals 15

Output

For each test case in the input your program must produce one line of output, containing only
one integer: the largest number of new companies that can be created in the privatization
process.

The output must be written to standard output.

Sample input

2 22

0 0 20

10 20 30

4 430

10 20 100

20 10 400

50 10 50

25 25 500

3 100

10 10 33

0 10 33

10 0 33

0 0

Output for the sample input

1

2

0

ACM ICPC2006 – South American Regionals 16

Problem H
Report Recovery

Source file name: report.c, report.cpp, report.java or report.pas

At the end of the week, John asked Mary to send him an urgent sales report. Mary was in
a hurry because she was leaving for her holiday. She then copy-pasted the sales sheet on an
email, sent it to John and went out. She did not want to be annoyed with work issues, so she
left without telling anyone where she would be. She announced that she would be simply not
available for the next two weeks, turned off her cell phone, and left.

When John received the message he realized that the report had no spaces at all! He knew
that the report should have a header line with product codes of the form P1, P2, . . ., PN and
the word Totals at the end. Then there would be several lines reporting product sales for the
different sellers of Mary’s office. Each seller was identified with a name composed by one word
(only alphabetical characters). The line corresponding to a seller should begin with his/her
name, followed by the number of sold products, according to the columns’ report. The last line
of the report should begin with the two letters TP followed by the totals of each column in the
report (of course, no seller’s name began with the letters TP). John knew that there were no
negative numbers in the report, a zero quantity was reported with a single 0, and there were
no leading zeros when reporting a positive quantity.

At this point, John decided to reconstruct Mary’s report. He knew that there could be more
than one possible result, but he wanted to do it anyway with the first consistent solution that
he could find (maybe he could fix any mistakes when Mary comes back).

Could you help John with the recovering of Mary’s sales report?

Input

The input consists of several test cases. The first line in the input contains an integer C
specifying the number of test cases. The first line of a report is a header line, containing the
product codes P1, P2, . . . PN and the word Totals, as described above. The numbering of
products in this header line is consecutive, from 1 to N , with 1 ≤ N ≤ 5. Then there are a
number of lines, each representing a row of the report, as described above. The last line of the
report starts with the letters TP and have the format described above. Consider that each seller
sold less than 1000 units of each product. There are no more than 4 sellers on each test case.
Each seller name will not exceed 10 characters (only uppercase and lowercase letters).

The input must be read from standard input.

Output

For each test case in the input your program must produce one possible Mary’s report. Each
line of the answer must be left aligned, with its items separated by a single space, and with no
space at its end.

The output must be written to standard output.

ACM ICPC2006 – South American Regionals 17

Sample input

2

P1P2P3Totals

Amanda121100131

Charles5141772

Monique14121238

TP1862629241

P1P2Totals

Ingrid9519851936

Candid49212504

Peter10313

Camila000

TP145310002453

Example of output for the sample input

P1 P2 P3 Totals

Amanda 121 10 0 131

Charles 51 4 17 72

Monique 14 12 12 38

TP 186 26 29 241

P1 P2 Totals

Ingrid 951 985 1936

Candid 492 12 504

Peter 10 3 13

Camila 0 0 0

TP 1453 1000 2453

ACM ICPC2006 – South American Regionals 18

Problem I
Turkish Roulette

Source file name: roulette.c, roulette.cpp, roulette.java or roulette.pas

Turkish Roulette is a betting game that uses a roulette with S slots, each one numbered with
an integer between -64 and 64. In each turn of the game players bet on B balls, each one also
numbered from -64 to 64. For each of the B balls, exactly one player will bet on it.

After spinning the roulette, the dealer throws in the B balls sequentially. When the roulette
stops, each ball is lodged over two (adjacent) slots, as depicted in the figure below, which shows
a roulette with thirty two slots and four balls. Notice that, as the figure illustrates, a ball
occupies the space of two adjacent slots, and therefore there is room for at most bS/2c balls in
the roulette.

–101
22

16
-9

6
5

1
1

–1

2

0
1 3 5 22 0

18

0

–3
1

4
22

0
-1

3

0
0

12
3–4

–1

3

–7
12

Balls end up lodged in the same relative positions that they were thrown in the roulette.
That is, if balls a, b and c are thrown in that sequence, they end up lodged such that, in
clockwise direction, a is followed by b which is followed by c which is followed by a.

The value of a ball in a turn is calculated by multiplying the ball’s number by the sum of
the numbers of the two adjacent slots over which the ball is lodged. If a ball’s value is positive,
the player who bet on that ball receives that amount (the ball’s value) from the dealer; if a
ball’s value is negative, the player who bet on that ball must pay that amount to the dealer.
The profit of the dealer in a turn is the total amount received minus the total amount paid.

For example, in the figure above, the dealer pays $5.00 for ball numbered −1, pays $7.00 for
ball numbered −7, receives $24.00 for ball numbered 12 and does not pay nor receive anything
for ball numbered 3. Therefore, in this turn the dealer makes a profit of $12.00 (24 − 5 − 7);
note that the dealer’s profit in a turn may be negative (loss).

You will be given the description of the roulette, the description of the balls and the sequence
in which the balls are thrown into the roulette. Write a program to determine the maximum
profit that the dealer can make in one turn.

ACM ICPC2006 – South American Regionals 19

Input

Input contains several test cases. The first line of a test case contains two integers S and B
which indicate respectively the number of slots in the roulette (3 ≤ S ≤ 250) and the number
of balls used (1 ≤ B ≤ bS/2c). The second line of a test case contains S integers Xi, indicating
the numbers associated to the roulette’s slots, in clockwise direction (−64 ≤ Xi ≤ 64, for
1 ≤ i ≤ S). The third line of a test case contains B integers Yi, indicating the numbers
associated to the balls (−64 ≤ Yi ≤ 64, for 1 ≤ i ≤ B), in the sequence the balls are thrown
into the roulette (notice it is in this order that they end lodged in the roulette, in clockwise
direction). The end of input is indicated by S = B = 0.

The input must be read from standard input.

Output

For each test case in the input your program must write one line of output, containing an
integer indicating the maximum profit the dealer can make in one turn.

The output must be written to standard output.

Sample input

4 2

-1 0 2 -1

-1 1

5 2

3 2 -1 7 1

2 3

7 3

-4 3 2 1 0 -4 -2

-10 0 1

4 2

0 2 3 0

-2 -2

0 0

Output for the sample input

4

-11

56

10

