WHAT SHOULD WE COMPUTE?

F. J. Gruenberger

September 1963

P-2786

WHAT SHOULD WE COMPUTE?

*
F. J. Gruenberger

The RAND Corporation, Santa Monica, California

If computers are to be used efficiently (that is, in
a manner that is healthy for both the user and the vendor),
then we should define what constitutés a good computer problem.
It seems patently obvious that if the wrong problems are put
on the machines, inefficiency--or bankruptcy--will result.
Fortunately, many problems are good computing problems
intrinsically and intuitively, so we stay out of trouble by
good luck. As with many things, the extremes are obvious
to any dolt; the purpose of analysis is to allow us to dis-
criminate between the borderline cases. For example, payroll
calculations, or the solution of large systems of simultaneous
equations, are fine computer problems. On the other hand, a
simple tally of the results of a questionnaire is not a com-
puter problem, nor is the calculation of 175.

In the cold practical world, the first criterion of a
good computer problem is utility. There must be some value

(to somebody, usually the man who foots the bill for the

*
Any views expressed in this paper are those of the

author. They should not be interpreted as reflecting the
views of The RAND Corporation or the official opinion or
policy of any of its governmental or private research
'sponsors. Papers are reproduced as a courtesy to members
of its staff.

; This Paper was prepared for presentation at the Summer
Institute for Secondary School Mathematics Teachers, Univer-
sity of Oklahoma, July 11, 1963, and will be submitted for
publication in Datamation magazine.

machine) to the results we are trying to get. So our first

rule is:

1. Usefulness.

If we are only learning the art of computing, of course,
then Rule 1 can be waived. If some useful technique can be
driven home, then something as inane and useless as counting
to a million might be a good problem.

From here on, we can develop criteria that apply to any

use of a computer, whether practical or in a classroom.

2, Definition.

The problem must be defined; that is, we must know
precisely what the problem is. 1It's an "obvious" criterion,
but many a man-hour has been wasted on a plunge into pro-
gramming an undefined or ill-defined problem. Consider the
warehouse manager who innocently asks to have his inventory
problems "put on the computer.'" Or the student who asks,
"Can we 'do' roulette on the machine?"

The old hand learns to keep asking, 'What is the prob-
lem?" 1In a specific situation, he may ask it to the point
of open rebellion on the part of the customer. He appears,
to the customer, sort of stupid; after all, it's perfectly
blear to the customer what his problem is. Or is it? Our
short history is already loaded with sad tales of people who
never did get their problem properly defined.

So definition is necessary. It is hardly sufficient.
Few problems are better defined, for example, than Fermat's

Last Theorem.

-3-

If we know precisely what the problem is (and we
should continually emphasize ''precisely'), then we need a

method. To be high-sounding about it:

3. Algorithm.

In other words, we must know some way to solve the problem,
with or without a computer. Note that we say some way.
There are usually many ways. Here may be the first dis-
tinction between a computer solution to a problem and any
other solution. We are privileged to keep in mind that a
computer is fast; we may capitalize on this fact to seek,
as a first cut, a brute-force (or crowbar) method. As a
criterion, it matters little. What is vital to understand
is that we must have an algorithm that works, at least in
theory.

Here, of course, is where the theorem of Fermat fails
as a computer problem. We don't have a method, with or with-
out a computer. Often a problem can be solved by exhaustion,
by which we attempt to try all possibilities. This is
frequently acceptable as a method to use on the computer.

OK; we know what our problem is and a way to solve it.

We should now check for

4, Machine match.

This sounds like the most trivial criterion of all; namely,
‘that our problem should fit the machine we propose to solve
it on. It must fit in two ways: the instructions plus data
must fit the storage capacity of the computer, and the run-

ning time to solution must fit what time is available.

Brute-force methods may kill us here. Even in a classroom
atmosphere (perhaps especially in that atmosphere), com-
puter time is not unlimited, and is almost never free.

In a well-run computer course, the student does many
exercises. He should also do at least one problem. The
distinction is this: an exercise relates to a specific
technique, and the approach is usually spelled out. A
problem, on the other hand, will involve a broad goal, using
many techniques, and with very little spelled out. Part of
the student's task is to choose a suitable problem; that is,
one suited to his own capabilities and to the machine time
available. Hopefully, it should also be a good computer
problem. The instructor must prevent him from going to
either extreme (i.e., too trivial a problem, or one he can-
not hope to complete) and should also guide him to a problem
that is, according to the criteria we are discussing, a
problem worth putting on a computer. All such situations
can be covered by furnishing a stock collection of problems.
This will satisfy 90% of any class. But the best situation
of all is the one where the bright student selects a problem
all his own; perhaps one never tackled before. The check-

list we are developing might be of some help.

5. Repetition.

We make the statement categorically: a good computing
problem has a large element of repetition. This rule has
many exceptions, of course. The use of a computer for true
one-shot calculations is fairly common, but that doesn't
mean that one-shot problems (and particularly straight-line

formula evaluations) are good computer problems. One thing

a computer does well is repeat a sequence of instructions
(with or without modification). A good problem, then,

‘capitalizes on this capability.

6. Payoff.

The sixth criterion refers to overall efficiency. It
does not intersect with item (1), Usefulness. The question
is this: is a solution by computer more efficient, in some
sense, than a solution by any other means? For a good com-
puter problem, there should be a large payoff.

Let's consider items (2) through (6) in relation to an
actual problem. Consider the series of numbers shown in

Fig. 1. In the May 1950 issue of The American Mathematical

Monthly there appeared a proof of the following theorem:

For any integer, r, there exists a power of 2 each of whose
last r digits is either 1 or 2. The proof given is analytic,
of course, and merely establishes that such powers exist.

The mathematician is satisfied at having proved the existence,
The student of computing has found a good problem.

From Fig. 1, we can fill in the first four lines of the
table of Fig. 2. For r = 1, the first power of 2 satisfies
(that is, its last one digit is either 1 or 2). For r = 2,
the first occurrence is the ninth power. For r = 3 and
r = 4, the 89th power satisfies, and so‘:on. The computer
problem is to extend the table to, say, r = 20. From Fig. 1
we could fill in the table only through r = 4,

Except for usefulness (and let's face it; the market
for the table of Fig. 2 is sluggish, or even nonexistent),

this is very nearly a perfect computer problem.

X 2%

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024

11 2048
12 4096

53 9007199254740992
89 618970019642690137449562112

Fig. 1--Part of a Table of Powers of 2

r

1

2

3 89
4 89
5 589
6 3089

Fig. 2--Some Results

The problem is well defined; it can be understood by
a sixth grader.

A method of solution leaps to mind; namely, extend
Fig. 1 and search each entry for r ones or twos at the
low-order end. Developing the powers of 2 is easy; each
new power is found from its predecessor by doubling. The
searching process may take a small loop. There will have
to be some housekeeping and perhaps a simple restart pro-
cedure. All told, it might take 50 or 60 instructions on a
machine like the IBM 1620.

The problem fits the machine; in fact, it will fit any
computer built. We defined the limit of the problem to be
when r = 20. This means that we do not need to generate the
complete powers of 2, but only the low-order 20 digits of
each power. With a need for storage of only 20 decimal
digits of data, and less than 100 instructions, any computer
can work on this problem. We might note in passing that
the problem is intrinsically decimal; if it is to be done

on a binary machine, the machine would have to be programmed

-8-

to operate decimally. This would add a small amount of
data and a few instructions.

There is a large element of repetition; we will use
.our few instructions many millions of times, as the problem
‘is so far defined.
| Finally, the payoff is tremendous. One might proceed,
perhaps, to r = 8 with a desk calculator, but not much
farther (the entry for r = 11 is 8128089). On the 1620,
the solution as outlined above runs at about 400,000 stages
per hour. To run to the power where r = 11 would consume
some 20 hours of machine time. This is intolerable. It

is time to apply a further principle of good computing:

7. Brains over brawn.

Offhand, this does not seem to parallel items (1)
through (6), especially as a criterion. Nevertheless, it
is a vital element in many computer attacks to a problem.
It is axiomatic to experienced programmers that when a
problem has gone through all its stages (analysis, flow-
charting, coding, debugging, testing, and production), then
you know for the first time how the problem should have been
solved. Nearly always, one wishes he could tear the whole
thing up and start over. Usually this is not practical,
and the inefficient and unsatisfying solution is used for
?pro duction runs.

The situation we have met in our sample problem is not
* unusual, We have gone on the machine with a workable solu-
.tion to a simple problem, but it is obvious that this
solution will never fulfill our goal to find the value of

X for r = 20. We must find a way to speed up the solution.

We can't speed up the machine, but we can apply item 7.

Refer again to Fig. 1. The units digit of the powers
of 2 follow a cycle that repeats as follows: 2, 4, 8, 6,

2, 4, 8, 6, ..., endlessly. If the numbers we seek must end
in 1 or 2, then only every fourth number is even eligible.
If we search every power, then three out of four searches
are automatically wasted. Not only do we not need to search,
we need not even generate the intervening powers. We could
advance in one step from, say, the fifth power to the ninth
power with one multiplication (by 24 = 16) rather than with
four doublings. Just this simple change speeds up the solu-
tion by a factor of four.

We can go further. If we examine the sequence formed
by the last two digits (jumping by steps of four in the
original series), we find again a repeating cycle; namely,
32, 12, 92, 72, 52, 32, and so on. Again, only one term
of this series satisfies the conditions of the problem;
namely, the term 12. The original series, then, repeats
in its last two digits with a cycle of 20, and we can jump
20 steps at a time by multiplying by 220 = 1048576. Well.
Our problem could now run to r = 20 (on the 1620) in about
twelve million hours.

Without dwelling on the details of discovery, let us
state two theorems that can now be applied.

First, the principle hinted at above is quite general.
The low-order digit repeats with a cycle of four, which is
obvious on inspection. The two low-order digits repeat with
a cycle of 20. The three low-order digits have a cycle of
100, and each additional digit from there on increases the

cycle length by a factor of five. (The proof can be found

-10-

in the June 1951 issue of The American Mathematical Monthly.)

It can also be proved that the terminal sequence of
ﬁigits consisting entirely of ones and twos is unique. That
is, when we find (for x = 89) that the last four digits are
2112, then we know that for a longer set of satisfactory
terminal digits, the last four will be 2112, Similar state-
ments can be made for the last r digits, no matter how great
r is.

Our reasoning now goes like this. Let's go on the
machine and type the low-order digits of every fourth power
until we achieve success (namely, on x = 9, when the terminal
digits are 12). At this point, we want to start jumping by
steps five times as big; namely, by 20's. We now look for
the entry that has its last three digits all ones or twos.
We are, at this point, examining only those powers which all
have their last two digits satisfactory. The digit just to
the left (called the critical digit) will maintain its parity;
that is, if it starts out odd it will stay odd, and if it
starts out even it will stay even (this is part of the
original proof, May 1950). We are thus assured of success,
at the next higher level for r, within the next five lines.

Each time we achieve success at the next level, we can
increase the jump rate by a factor of five and get our next
success within, at most, five stages.

In other words, our original attack was all wrong. We
%need a routine that will develop and type the terminal 20
‘digits of any arbitrary power of 2 and go on to higher
.powers by an increment that we can alter byia factor of
five when success is achieved.

This is readily done by calculating first a table of

-11-

powers of powers of 2, as in Fig. 3., Fifty lines of this
table (the argument is formed by doubling; the function
by squaring) suffice to carry our problem to its conclusion.
We can now go on the machine with starting values of,
'say, x = 89 and Ax = 100. We know from our experience with
‘the problem that we have reached r = 4 and that we can afford
to jump by 100's. A search-and-multiply loop on the table
of Fig. 3 will produce for us the last 20 digits of any
arbitrary power of 2. For examplé, if we want the 89th
power, we need to multiply together the functional values
corresponding to the arguments 64, 16, 8, and 1 (precisely

the binary representation of 89, of course).

Argument Function
1 2

2 4

4 16

8 256

16 65536

32 4294967296

64 744073709551616

128 607431768211456

Fig. 3--A Table of Powers of Powers of 2

=12-

We will arrange also to alter 4x by a factor of five
whenever we please., We are now ready to really solve our
-problem. We will generate the 89th, 189th, 289th, 389th,
and so on, powers (all of which end in the digits 2112) and
~wa1t for the appearance of a terminal sequence of more than
four digits that are all ones or twos. We know that this
will occur after, at most, five lines. At the time we will
alter Ax by a factor of five and proceed. The process re-
peats from then on. In about ten minutes (on the 1620) we
can develop the table shown in Fig. 4.

We have now exhausted the problem (well, almost) from
‘the computing point of view, too. At least we now have a
method that could extend Fig. 4 a considerable distance with
only modest expenditure of machine time. There are still,
however, one or two loose ends.

(1) We don't quite understand what goes on at the
stages where r = 3 and 4, r = 6, 7, and 8, and
= 9 and 10. We get more than we should and it
- upsets the orderly pattern of things (but for
the best).

(2) As a matter of pedagogy, a good computing problem
should have one more feature:

8. Transfer.

We ask students to work on problems with the hope, however
faint, that they'll learn something that can be applied to
Ethe next problem. Therefore, consider another problem.
Refer again to Fig. 1 (p. 6).

: The tenth power of 2 contains a significant zero, and
is the first such power. The 53rd power is the first to

exhibit two consecutive zeros. We are building up the

-13-

r X

1

2

3 89
4 89
5 589
6 3089
7 3089
8 3089
9 315589
10 315589
11 8128089
12 164378089
13 945628089
14 1922190589
15 11687815589
16 109344065589
17 231414378089
18 1452117503089
19 4503875315589
20 65539031565589

Fig. 4--More Results of the Terminal 2* Problem

.=14-

table shown in Fig. 5.

As one might expect, the theorem implied here can be

proved. Given any integer r, it can be shown that there
%exists a power of 2 containing r consecutive zeros.
; This sounds like much the same problem. It fits the
‘criteria in: the same way, for example, And as before, a
method leaps to mind: Generate the successive powers and
‘search for strings of zeros. And, alas, there the re-
semblance ends. We have found no way yet on this problem
to apply principle 7.

Moreover, the mechanics of solution is much worse.

We must develop all of each successive power (rather than

just the last r digits), and so the time involved in creating

the numbers and searching them goes continually up. At

'x = 11000, the process runs about 5 powers per minute on
.a Model I 1620, or about 40 powers per minute on a 7094.
Until principle 7 comes into play, the problem is somewhat

hopeless.

a

X

10
53
242
377
1491
1492
6081
(greater than 11088)

© N o B W N

. »

Fig. 5--The Problem of Consecutive Zeros in 2%

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

